ارزیابی ردپای آب مجازی محصولات زراعی، دامی و نهاده‌های مصرفی کشاورزی (مطالعه موردی: استان قم)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه علوم و مهندسی آب، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران

چکیده

مدیریت منابع آب در مناطق خشک و نیمه­خشک به­خصوص در بخش کشاورزی بسیار مهم می­باشد. مطابق بیلان آب استان قم در حدود 90 درصد از منابع آب در این منطقه در بخش کشاورزی مصرف می­گردد. در این مطالعه ردپای آب مجازی محصولات زراعی، دامی و نهاده­های مصرفی در بخش کشاورزی به­منظور کاهش فشار و حفظ منابع آبی موجود مورد تجزیه و تحلیل قرار گرفته است. در بخش زراعی با استفاده از نرم­افزار NETWAT نیاز آبی گیاهان محاسبه و با استفاده از فرمول مکانن و هوکسترا که در سال 2010 ارائه شده­است، ردپای آب مجازی محصولات زراعی در میانگین ده ساله محاسبه شد. نتایج نشان داد که به­دلیل پایین بودن راندمان سامانه آبیاری حجم ردپای آب سفید که به تلفات آبیاری اشاره دارد در محصولات استان بسیار بالا تخمین زده شد، سهم ردپای آب سفید در محصولات جو، گندم، یونجه، پیاز، گوجه فرنگی، خربزه و ذرت به­ترتیب برابر 55 درصد، 49 درصد، 48 درصد، 51 درصد، 46 درصد، 54 درصد و 5/37 درصد از سهم کل ردپای آب محاسبه شده است. همچنین ردپای آب سبز به دلیل کمبود میزان بارش در استان قم بسیار ناچیز برآورد شد. ردپای آب سبز در محصولات جو و گندم نسبت به سایر محصولات بیشتر بود که علت این امر همپوشانی فصل کشت و بارندگی بوده است، سهم ردپای آب سبز در محصول جو 12 درصد و در گندم برابر 11 درصد از سهم کل ردپای آب بود. در بخش دامی، ردپای آب در مشتقات دام و طیور با استفاده از روش هوکسترا و مکانن، 2010 محاسبه و با متوسط ردپای آب در کشورهای مختلف مقایسه شد. نتایج در بخش دامی نشان داد که ردپای آب مجازی در تولید گوشت قرمز و شیر به­ترتیب 39 متر مکعب بر کیلوگرم و 42/2 متر مکعب بر لیتر تخمین زده شد. همچنین ردپای آب مجازی در گوشت مرغ و تخم­مرغ به­ترتیب 4/7 و 34/4 متر مکعب بر کیلوگرم محاسبه شد. در بخش نهاده­های مصرفی، ردپای آب در کود (ازته، فسفاته، پتاسه و سایر کودها) برای اولین بار مورد توجه قرار گرفت. در بخش نهاده­های مصرفی، ردپای آب مجازی در کود تولیدی برخی از محصولات با استفاده از اطلاعات پرسشنامه محاسبه شد. نتایج نشان می­دهد که مجموع ردپای آب مجازی کود مصرفی برای تولید محصولات گندم، جو، پنبه و یونجه به­ترتیب 62/2، 19/1، 07/1 و 54/2 متر مکعب بر کیلوگرم تخمین زده شد. سهم کودهای ازته در تولید محصول گندم، یونجه، پنبه و جو به­ترتیب 54، 59، 68 و 60 درصد از سهم ردپای آب کل در کود مصرفی را تشکیل می­دهد.     

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Virtual Water Footprint in Crop, Livestock and Agricultural Consumption Inputs (Case Study: Gom, Province)

نویسندگان [English]

  • T. Khalili 1
  • M. Sarai Tabrizi 1
  • H. Babazadeh 1
  • H. Ramezani Etedali 2
1 Department of Water Engineering and Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Water Engineering and Sciences, Imam Khomeini International University of Qazvin, Qazvin, Iran
چکیده [English]

Introduction: Water resources management in arid and semi-arid regions is very important specially, in agricultural sector.  The major share of water use is daily consumption by humans for drinking, washing and cooking. Furthermore, population growth increases agricultural production demand, and this highlights the role of water resources management in the agricultural sector. The 1950’s studies showed 12 countries with a population of 20 million experienced water shortage. Virtual water is the volume of water which is consumed for a production from the beginning stage to the end. Scientists have shown that 96% of water footprints are related to crops, livestock and horticultural productions and only 4% it consumed as domestic water. Water balance data in Qom province shows that 90% of water resources are using in the agricultural sector. Investigation of water footprints in the agricultural sector is highly beneficial to improve water resources management in arid and semi-arid regions such as Qom.
Materials and Methods: The research was conducted to find out the production and cultivation water needs in the agricultural sector for 10 years, via calculating the gray, blue and green water footprints using Mekonnen and Hoekstra models. In the livestock sector, water footprint’s information such as the number of livestock and poultry, production of red meat, chicken meat, egg and milk were also determined using the Mekonnen and Hoekstra. The water footprint in fertilizer was calculated using a questionnaire survey. Excel and SAS apps were used to analyze the collected data for all three study sections.
Results and Discussion: The results showed that the water footprint in wheat, barley, cotton, onion, tomato, melon, watermelon, alfalfa, and corn were 3018, 2882, 10960, 1463, 1525, 960, 2504, 1683 and 416 m3/ton, respectively. The low irrigation efficiency led to a very high amount of white water footprint in the productions. Green water footprint was very low due to the lack of rainfall. In the livestock sector, the water footprint in red meat and milk were 39 m3/kg and 2.42 m3/lit, respectively which were much more than the global average. In the poultry sector, the water footprint in chicken meat and egg were 7.4 and 4.34 m3/kg, respectively, that were very high compared to the global average. The water footprint in fertilizer for wheat, barley, cotton and alfalfa productions were 2.62, 1.19, 1.07 and 2.54 m3/kg and this amount was higher under nitrogen fertilizer. The average virtual water footprint for chicken meat production in Qom province was 7.4 m3/kg. This amount in the world, USA, India, Russia, Mexico and the Netherlands is equal to 3.92, 2.39, 7.74, 5.76, 5.01 and 2.22 m3/kg respectively. In Netherlands, less water is in use in the agricultural sector than the other countries. In this country, the virtual water footprint in chicken meat is in the best position. India has the highest water consumption in poultry breeding with a consumption of 7.74 m3/kg. The average virtual water footprint in Iran for egg production is 4.34 m3/kg , while the average virtual water footprint for egg production in the world, USA, India, Russia, Mexico and the Netherlands is 3.34, 1.51, 7.53, 4.92, 4.28, and 1.4 m3/kg, respectively. India consumes the most water in the production of eggs such as chicken with a quantity of 7.53 m3/kg and the Netherlands has the least consumption with a value of 1.4 m3/kg .
Conclusion: The concept of virtual water footprint in each region reduces the pressure on water resources. For better management in agricultural regions, it is possible to prevent the cultivation of high water demand crops. The most common cause of high water footprint in livestock and poultry is nutrition, so, internationally food import can be a good solution. Industrialization of poultry can also reduce water footprint. The implementation of this research can be a useful clue to the sustainable control and management of water resources and achieving an optimal cultivation pattern in our country and all provinces facing limited water resources.

کلیدواژه‌ها [English]

  • Green water footprint
  • virtual water
  • water resources management
1-       Ababaei B., and Ramezani Etedali H. 2014. Estimation of Water Footprint Components of Iran’s Wheat Production: Comparison of Global and National Scale Estimates. Journal of Environment Process 1: 193-205. (In Persian with English abstract)
2-       Allan J.A. 1997. Virtual Water-the Water, Food, and Trade Nexus: Useful Concept or Misleading Metaphor. Water International 28(1): 106-113.
3-       Antonelli M., and Tamea S. 2015. Food-water security and virtual water trade in the Middle East and North Africa. International Journal of Water Resources Development 31(3): 326-342.
4-       Dehghanpir Sh., Bazrafshan O.B., and Helisaz A. 2016. Estimation and Evaluation of Blue and Green Water Footprints of major Crops in Roudan in Hormozgan. Iranian Water and Wastewater Sconce and Engineering Congress. University of Tehran. (In Persian)
5-       Hoekstra A.Y., and Hung P.Q. 2002.Virtual water trade. A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series, 11:166.
6-       Hoekstra A.Y. 2012. The hidden water resource use behind meat and dairy. Animal Frontiers 2(2): 3-8.
7-       IWMI. 2000. World water and climate Atlas, http://www.iwmi.org.
8-       Khalili T., Sarai Tabrizi M., Babazadeh H., and Ramezani Etedali H. 2020. Water resources management of Qom Province by using the concept of water Footprint. Journal of Ecohydrology 6(4): 1109-1119. (In Persian)
9-       Mekonnen M.M., and Hoekstra A.Y. 2010. A Global and High-Resolution Assessment of the Green, Blue and Gray Water Footprint of Wheat. Hydrology and Earth System Scinces14: 1259-1276.
10-   Mekonnen M., and Hoekstra A.Y. 2011. National water footprint accounts: the green, blue and grey water footprint of production and consumption.
11-   Mekonnen M.M,. and Hoekstra A.Y. 2012. A global assessment of the water footprint of farm animal products. Ecosystems 15(3): 401-415.
12-   Ministry of Energy, Qom Regional Water Company. Face to Face Talks, 2020. (In Persian)
13-   Movahhed nejad E., Rmezani Etedali H., and Shokoohi A.R. 2019. Using the concept of virtual water footprint in livestock production to protect water resources. Jornal of Water and Soil Conservation 8(3): 134-143. (In Persian with English abstract)
14-   Ramezani Etedali H., and Ababaei B. 2016. Estimation of Water Footprint Components in Provincial and National Scale Barely Production. Journal of Water Research in Agricultural 30(3): 431-443. (In Persian)
15-   Schyns J.F., Hamaideh A., Hoekstra A.Y., Mekonnen M.M., and Schyns M. 2015. Mitigating the Risk of Extreme Water Scarcity and Dependency: the Case of Jordan. Water 7: 5705-5730.
16-   Yatheendrdasan R.K., Arathy J., Rubasree M., Shimola C.M., and Rajeswari R. 2020. Evaluation of a Traveller Sprinkler System with Various Nozzles. Water Productivity Journal (WPJ) 1(1): 21-30.