اثر روش‌های خاک‌ورزی بر برخی خصوصیات خاک و بهره‌وری آب در دو رقم چغندرقند

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استادیار پژوهشی بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی آباد، سازمان تحقیقات، آموزش و ترویج کشاورزی، دزفول، ایران

2 استادیار پژوهشی بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی آباد، سازمان تحقیقات، آموزش و ترویج کشاورزی، دزفول، ایران

چکیده

مصرف بهینه آب، انرژی و بهبود خصوصیات فیزیکی خاک از ویژگی‌های خاک‌ورزی حفاظتی است که در این مطالعه تأثیر آن بر عملکرد و بهره‌وری آب چغندرقند پاییزه طی دو سال زراعی 97-96 و 98-97 بررسی شد. برای این منظور آزمایشی به‌صورت کرت‌های نواری خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در اراضی مرکز تحقیقات کشاورزی صفی‌آباد دزفول با بافت لومی رسی سیلتی اجرا شد. کرت اصلی شامل خاک‌ورزی مرسوم (CT)، چیزل (CH)، کم‌خاک‌ورزی (MT)، و بی خاک‌ورزی به صورت کاشت مستقیم در بقایای گندم (NT) و کرت فرعی شامل دو رقم پالما و شریف بود. آبیاری به‌صورت جویچه‌ای و با سیفون‌های هم قطر صورت گرفت. نتایج شاخص مخروطی (CI) و جرم مخصوص ظاهری خاک (BD) در لایه 10-0 برای کلیه روش‌های خاک‌ورزی مشابه و در یک سطح آماری قرار داشتند. مقادیر CI در عمق 20-10 سانتی‌متر با میانگین 79/0 مگاپاسکال در یک سطح اما BD در تیمار NT با مقدار 7/1 گرم بر سانتی‌متر مکعب اختلاف معنی‌داری با سه روش دیگر خاک‌ورزی نشان داد. با این وجود هیچ یک از روش‌های خاک‌ورزی تأثیری در رشد و انشعاب ریشه چغندرقند نداشت. از طرفی درصد کربن آلی خاک، عملکرد و بهره‌وری آب چغندرقند، در تیمارهای خاک‌ورزی اختلاف معنی‌داری نداشتند. واکنش ارقام پالما و شریف به شیوه‌های خاک‌ورزی یکسان بود، حال آنکه بهره‌وری آب ریشه تر و شکر رقم پالما (به‌ترتیب 9 تن در هکتار و 2/1 کیلوگرم در متر مکعب) بالاتر از رقم شریف (به‌ترتیب 3/7 تن در هکتار و 1 کیلوگرم بر متر مکعب) بود. مجموع نتایج نشان داد که استفاده از کاشت مستقیم چغندرقند پاییزه در بقایای گندم امکان‌پذیر بوده و علاوه بر حذف آبیاری قبل از کاشت و کاهش تردد ماشین‌های خاک‌ورزی، با گزینش رقم مناسب می‌توان عملکرد کیفی را افزایش داد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Tillage Methods on some Soil Properties and Water Productivity of Two Sugar Beet Cultivars

نویسندگان [English]

  • M. Khorramian 1
  • M.S. Hasanvandi 2
  • S.R. Ashrafeizadeh 1
1 Assistant Professor Agricultural Engineering Research Department, Safiabad Agricultural Research and Education and Natural Resources Center, AREEO, Dezful, Iran
2 Assistant Professor Sugar Beet Research Department, Safiabad Agricultural Research and Education and Natural Resources Center, AREEO, Dezful, Iran
چکیده [English]

Introduction: North of Khuzestan province is one of the major areas for autumn sugar beet planting. Conventional tillage (CT) is widely practiced by sugar beet growers in this region. CT in sugar beet consists of burning wheat residue, using deep plowing with a moldboard plow or ripper plowing followed by several passes of disking, leveling, and furrowing. These aggressive tillage practices have many negative consequences for soils. Losses of soil organic carbon decreases soil permeability and consequently increases soil erosion and surface runoff. Therefore, applying conservation agriculture principles in sugar beet planting, conservation of residues and elimination or reduction of tillage, can help to optimize water use management and improve soil health on a farm scale. The objectives of this study were (i) to determine the possibility of direct planting of autumn sugar beet in wheat residues, (ii) to estimate sugar beet yield and crop water productivity (WP) under CT, chisel (CH), minimum tillage (MT) and no-tillage (NT) systems, (iii) to evaluate the response of sugar beet cultivars (Sharif and Palma) to different soil tillage systems, and (iv) to determine the effect of soil tillage systems on some soil physical properties.
Materials and Methods: A field experiment was conducted for two years (2016—2017) at the Safiabad Dezful Agricultural Research Center (32° 14.44´-32°15.93´ and 48° 25.41´-48°47). The soil of the study site was deep, well-drained with a silty clay loam texture. The mean annual precipitation and evaporation are 317 and 2400 mm, respectively, with an elevation of 108 m above mean sea level. Irrigation water was supplied from the Dez irrigation network without any salinity restrictions. The experimental was conducted in a split-plot arrangement based on a randomized complete block design with three replicates. The main-plot treatment was tillage method and the subplot treatment was two sugar beet cultivars (Palma and Sharif). Tillage treatments included conventional tillage (CT) (moldboard ploughing + MT steps), chisel (CH) (chisel ploughing + MT steps), minimum tillage (MT) (two perpendicular disks, fertilizing centrifugal machine, disking, furrowing, planting with pneumatic row planter), and no-tillage (NT) (spraying, planting with NT pneumatic row planter). The length and width of each plot were 100 and 6 m, respectively, and row spacing was 75 cm.
Soil penetration resistance or cone index (CI) readings were recorded in 2 cm increments to a depth of 50 cm using SP1000 digital penetration tester to reflect the soil compaction. Soil bulk density was determined in 0-10 and 10-20 cm layers. In the first and second year, sugar beet samplings were done 216 and 220 days after planting, by harvesting a row of 75 cm with length of 10 m (7.5 m2). WP was calculated by dividing the root and sugar yield to irrigation water and effective rainfall (effective rainfall was calculated every year with SCS method). Composite data analysis and mean comparison were performed with MSTATC statistical software.
Results and Discussion: Results of CI showed no significant difference between four tillage methods at 0-10 cm depth. With increasing depth up to 30 cm, slight differences in soil compaction were observed for different tillage treatments, especially in the second year. Overall, compaction in the 0-50 cm profile in the CT and CH method were about 45% and 33%, respectively, lower than NT method, whereas in MT method it was about 37% higher than NT method. Results of root branch number analysis showed that the NT and CT treatments had the lowest branching (2.67 and 2.83, respectively) and the two CH and MT treatments had the highest branching (4.2 and 5.3, respectively). Therefore, NT had no negative effect on root growth of sugar beet. The results of bulk density measurements in the 0-10 cm layer were consistent with the results of the CI, but at depth of 10-20 cm, NT method with the highest bulk density (1.71 g cm-3) had significant difference with the other three tillage methods. Tillage method had no significant effect on root and sugar yield and root and sugar WP. However, in CT treatment, root yield increased by 6-8.5% and sugar yield by 6-12%, while root and sugar WP in NT treatment was about 8% higher than in the other three tillage treatments. On the other hand, changing climate conditions, especially rainfall during two years of the experiment, resulted in significant interaction between year and cultivar for yield and WP at 1% probability level. In the first year, the yield of Sharif cultivar (86.7 t ha-1) was higher than Palma (80.2 t ha-1), but in the second year, despite the decreasing yield of both cultivars, higher resistance of Palma cultivar to Cercospora disease resulted in a significant increase in sugar yield and WP over last year.
Conclusion: The two-year results of this study showed that the direct planting of autumn sugar beet in wheat residues (NT) is possible. Sugar beet yield and WP were not significantly different in tillage methods, but NT reduced tillage traffic from 7 times to 2 times and reduced energy consumption. The response of the two sugar beet cultivars to different tillage methods was the same and among them the Palma cultivar had the highest yield because of its higher resistance to Cercospora disease.

کلیدواژه‌ها [English]

  • autumn sugar beet
  • Cone index
  • soil bulk density
  • Surface Irrigation
  • Tillage
  • Abadzadeh H.R., Ahmadi K., Mohammadnia Afrozi S., Taghani R.A., Abbasi M., and Yari S. 2017. Agricultural Statistics. Volume II. Information and Communication Technology Center of Ministry of Agriculture Jihad. (In Persian)
  • Afshar R.K., Nilahyane A., Chen C., He H., Stevens W.B., and Iversen W.M. 2019. Impact of conservation tillage and nitrogen on sugar beet yield and quality. Soil and Tillage Research 191: 216-223.
  • Alizadeh M. 2007. Irrigation system design. Volume 1. Ferdowsi University of Mashhad Publications. (In Persian)
  • Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop Evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Paper No. 56.
  • Arvidsson J., Bolenius E., and Cavalieri K.M. V. 2012. Effects of compaction during drilling on yield of sugar beet (Beta vulgaris). European Journal of Agronomy 39: 44–51.
  • Belmont K.M. 2015. Effect of Tillage, Irrigation Amounts, and Nitrogen Rates in Sugar Beet (Beta vulgaris). University of Idaho. Thesis.
  • Bengough A.G., and Mullins C.E. 1990. Mechanical impedance to root growth: a review of experimental techniques and root growth responses. Journal of Soil Science 41(3): 341–358.
  • Cavalaris C.K., and Gemtos T.A. 2002. Evaluation of four conservation tillage methods in the sugar beet crop. Journal of Scientific Research and Development 4: 1-24.
  • Chandra A., Joshi B., and Guru S.K. 2018. A comparative study on tillage practices and their impact on soil properties and root attributes of plants. International Journal of Chemical Studies 6(2): 2257-2263.
  • Desrochers J., Brye K.R., Gbur E., Pollock E.D., and Savin M.C. 2019. Long-term residue and water management practice effects on particulate organic matter in a loessial soil in eastern Arkansas, USA. Geoderma 337: 792-804.
  • Ebrahimi Koulaee H., Norouzi N., Hasani M., Bakhtiari M.R., Pedram A., and Noshad H. 2011. Effect of soil compaction on some quantity and quality characters of sugar beet. Journal of Sugarbeet 26(2): 214-205. (In Persian with English abstract)
  • Evans R.G., Stevens W.B., and Iversen W.M. 2010. Development of strip tillage on sprinkler irrigated sugarbeet. Applied Engineering in Agriculture 26(1): 59–69.
  • Gao W., Whalley W.R., Tian Z., Liu J., and Ren T. 2016. A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field. Soil and Tillage Research 155: 190-198.
  • Gemtos B.T.A., and Cavalaris C.K. 2001. Soil tillage effect in the sugar beet crop. First World Congress on conservation agriculture. 1-5 Oct. 2001 Madrid, Spain.
  • Gura I., and Mnkeni P.N.S. 2019. Crop rotation and residue management effects under no till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma 337: 927-934.
  • Halvorson A.D., and Hartman G.P. 1984. Reduced Seedbed Tillage Effects on Irrigated Sugarbeet Yield and Quality. Agronomy Journal 76(4): 603.
  • Hosseinpour M., Hosseinian S.H., and Yousefabadi V. 2017. Effect of irrigation management on quantitative and qualitative parameters of autumn-sown sugar beet. Journal of Sugarbeet 33(2): 221-235. (In Persian with English abstract)
  • Jabro J.D., Stevens W.B., Iverson W.M., Evans R.G., and Allen B.L. 2014. Crop water productivity of sugarbeet as affected by tillage. Agronomy Journal 106(6): 2280-2286.
  • Khorramian M., and Hasanvand M.S. 2020. Determination of irrigation water productivity of direct drilling of autumn sown sugar beet in North of Khouzestan. Agricultural Engineering Research Institute. Report no. 58553. (In Persian with English abstract)
  • Koch H.J., Dieckmann J., Buchse A., and Marlander B. 2009. Yield decrease in sugar beet caused by reduced tillage and direct drilling. European Journal of Agronomy 30(2): 101–109.
  • Laufer D., and Koch H.J. 2017. Growth and yield formation of sugar beet (Beta vulgaris) under strip tillage compared to full width tillage on silt loam soil in Central Europe. European Journal of Agronomy 82: 182–9.
  • Laufer D., Loibl B., Marlander B., and Koch H.J. 2016. Soil erosion and surface runoff under strip tillage for sugar beet in Central Europe. Soil Tillage Research 162: 1–7.
  • Mahmoodi S.B., Sharifi H., and Khodaddadi S. 2012. Evaluation of Commercial Sugar Beet Cultivars for Resistance to Cercospora Leaf Spot Under Field Condition. Plant Protection 34(2): 23-32.
  • Martín-Lammerding D., Tenorio J.L., Albarran M.M., Zambrana E., and Walter I. 2013. Influence of tillage practices on soil biologically active organic matter content over a growing season under semiarid Mediterranean climate. Spanish Journal of Agricultural Research 11(1): 232-243.
  • Merten G.H., Araújo A.G., Biscaia R.C. M., Barbosa G.M.C., and Conte O. 2015. No-till surface runoff and soil losses in southern Brazil. Soil and Tillage Research 152: 85-93.
  • Miyazawa K., Tsuji H., Yamagata M., Nakano H., and Nakamoto T. 2004. Response of Soybean, Sugar Beet and Spring Wheat to the Combination of Reduced Tillage and Fertilization Practices. Plant Production Science 7(1): 77–87.
  • Mu X., Zhao Y., Liu K., Ji B., Guo H., Xue Z., and Li C. 2016. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat–maize cropping system on the North China Plain. European Journal of Agronomy 78: 32-43.
  • Nouri A., Lee J., Yin X., Tyler D. D., and Saxton A.M. 2019. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma 337: 998-1008.
  • Richard G., Boiffin J., and Duval Y. 1995. Direct drilling of sugar beet (Beta vulgaris) into a cover crop: effects on soil physical conditions and crop establishment. Soil Tillage Research 34(3): 169–85.
  • Romaneckas K., Romaneckien R., Sarauskis E., Pilipavius V., and Sakalauskas A. 2009. The effect of conservation primary and zero tillage on soil bulk density, water content, and sugarbeet growth and weed infestation. Agronomy Research 7(1): 73-86.
  • Romaneckas K., Sarauskis E., Masilionytė L., and Sakalauskas A. 2013. Impact of Different Tillage Methods on Silty Loam Water Content in Sugar Beet (Beta vulgaris) Crop. Journal of Environmental Protection 4: 219-225.
  • Scholz G., Quinton J.N., and Strauss P. 2008. Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. Catena 72(1): 91–105.
  • Singh K., Mishra A.K., Singh B., Singh R.P., and Patra D.D. 2016. Tillage effects on crop yield and physicochemical properties of sodic soils. Land Degradation and Development 27(2): 223-230.
  • Stevens W.B., Evans R.G., Iversen W.M., Jabro J.D., Sainju U.M., and Allen B.L. 2015. Strip tillage and high-efficiency irrigation applied to a sugarbeet–barley rotation. Agronomy Journal 107(4): 1250–1258.
  • Tarkalson D.D., and King B.A. 2017. Effects of tillage and irrigation management on sugarbeet production. Agronomy Journal 109(5): 2396–2406.
  • Tarkalson D.D., Bjorneberg D.L., and Moore A. 2012. Effects of tillage system and nitrogen supply on sugarbeet production. Tillage System & Nitrogen Supply 49(3&4): 79–102.
  • Uhlir, Marecek J., and Cervinka J. 2018. Impact of soil compaction in sowing on development and crops of sugar beet. Research in Agricultural Engineering 52(1): 11–16.
  • Wang Y., Zhang Y., Zhou S., and Wang Z. 2018. Meta-analysis of no-tillage effect on wheat and maize water use efficiency in China. Science of The Total Environment 635: 1372-1382.