بهینه‌سازی و امکان‌سنجی استفاده از سامانه‌های استحصال آب باران در اردبیل

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه آبیاری و زهکشی پردیس ابوریحان دانشگاه تهران

2 آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

3 پردیس ابوریحان دانشگاه تهران

چکیده

ایران از لحاظ اقلیمی جزء مناطق خشک و نیمه‌خشک جهان محسوب می‌شود که از میزان بارندگی نسبتاً پایینی برخوردار است. از طرفی، توزیع این میزان بارندگی در کشور نیز مناسب نبوده و اغلب در سواحل دریای خزر و نیمه غربی تا جنوب غرب کشور رخ می‌دهد. این عوامل، لزوم انجام اقدامات مدیریتی در جهت غلبه بر بحران آب را به دنبال دارد. یکی از راهکارهای عملی در راستای مدیریت منابع آب، اجرای سامانه‌های استحصال آب باران می‌باشد که باید به صورت بهینه طراحی شوند تا سامانه توجیه اقتصادی داشته باشد. در این مقاله با هدف ارزیابی و بهینه‌سازی سامانه‌های استحصال آب باران، داده‌های 42 ساله بارش روزانه شهرستان اردبیل تحت سناریو یک خانه مسکونی با سطح آبگیر 100 و 200 متر مربع و دارای چهار سکنه در نظر گرفته شد. شبیه‌سازی سامانه در نرم‌افزار متلب انجام و قابلیت اطمینان مخازن و نسبت سرریز برای حجم‌های مختلف مخازن محاسبه شد. در نهایت، بهینه‌سازی حجم مخازن با استفاده از الگوریتم ژنتیک انجام شد. نتایج نشان داد که برای پشت‌بام 100 متر مربع، استفاده از مخزن 5/0 متر مکعبی بیشترین سودآوری را داشته و با نصب این مخزن، سالانه 17 درصد در مصرف آب صرفه‌جویی خواهد شد. همچنین مخزن بهینه برای پشت‌بام 200 متر مربع برابر با 5/1 متر مکعب انتخاب شد که با استفاده از آن می‌توان در هر سال حدود 32 درصد در مصرف آب صرفه‌جویی کرد. ارقام بدست آمده برای درصد صرفه جویی در مصرف آب حاکی از پتانسیل بالای شهرستان اردبیل برای اجرای سامانه‌های استحصال آب باران است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization and Feasibility of Using Rainwater Harvesting Systems in Ardabil

نویسندگان [English]

  • H. Shokati 1
  • Z. Sojoodi 2
  • M. Mashal 3
1 Irrigation and Drainage Department, Tehran University, Tehran, Iran
2 Irrigation and Drainage Department, Tehran University, Tehran, Iran
3 Irrigating Department, Tehran University, Tehran, Iran
چکیده [English]

Introduction
 Arid and semi-arid climates prevail in Iran. The precipitation is also sparsely distributed in most areas of the country. Therefore, there is a need for management measures to overcome the water crisis. One of these measures is designing rainwater harvesting systems that can meet some of the non-potable needs and reduce runoff in urban areas. The main components of rainwater harvesting systems in residential regions include the catchment area, storage tank, and water transfer system from the catchment area to the tank. The storage tank is the biggest investment in a rainwater harvesting system, as most buildings are not equipped with a storage system. Therefore, tank capacity should be determined optimally to minimize project implementation costs. The stored water volume and the project profit increases with increasing the tank volume. However, in this case, the price of the tank increases. Therefore, the tank capacity should be optimally designed to justify economic exploitation.
Materials and Methods
 In order to evaluate the feasibility of using rainwater harvesting systems, the tanks’ volume was optimized. Due to the higher rainfall of Ardabil relative to the average rainfall of the country, it is expected that this area has a good potential for the implementation of rainwater harvesting systems. Therefore, this region was selected as the study area under the scenario of a residential house with ​​100 and 200 m2 catchment areas and four inhabitants. The amount of rainfall in the region is one of the primary parameters in determining the volume of rainwater collection tanks. Some of the precipitated water is always inaccessible due to evaporation from the surface. Nonetheless, since there is almost no sunlight during and immediately after rainfall, and also the received water enters the reservoirs shortly after precipitation, evaporation was assumed to be zero. Daily precipitation data for 42 years (from 1977 to 2019) were retrieved from the Ardabil Meteorological site. The daily water balance modeling method was used to analyze the rainwater harvesting systems due to the simplicity of interpretation, high accuracy and better general acceptance. Daily precipitation data were entered into this model and used as the primary source to meet the domestic demands. Simulation of rainwater harvesting systems was performed using daily precipitation data in MATLAB software, and the reliability of these systems was calculated for different tank volumes. Then, considering the price of drinking water and the current price of tanks in the market, the optimal volume of tanks was calculated using the Genetic Algorithm. Finally, the annual volume of water supply and the amount of water savings in case of using the optimal volumes of tanks were also estimated.
Results and Discussion
 The results showed that the percentage of reliability is directly related to the volume of the tank, thus, the reliability percentage also increases with increasing the tank capacity. As the volume of the tank increases, the slope of the increasing reliability percentage decreases continuously, to the point that this slope becomes almost zero. Comparing the reliability percentage obtained for 100 and 200 m2 rooftops indicated that 200 m2 rooftop had a higher reliability percentage than 100 m2 rooftop due to receiving much more rainfall and meeting the water need for a longer duration. By comparing the results of overflow ratio for 100 and 200 m2 rooftops, it can also be concluded that using a fixed size tank, the overflow in 200 m2 rooftop is higher, which is due to receiving more water volume than 100 m2 rooftop. The results also showed that by using a 5 m3 tank, 44.5 and 24 m3 of water can be stored annually from the 200 and 100 m2 catchment areas, respectively, these are equal to 28 and 19 m3, respectively, if 1 m3 tank is used. The optimal tank volumes for 100 and 200 m3 rooftops are equal to 0.59 and 1.66 m3, respectively. Since the tanks are made in specific volumes, the obtained volumes were rounded to the closest volumes available in the market. Thus, a 1.5 m3 tank was used for a 200 m2 rooftop and a 0.5 m3 tank was applied for a 100 m2 rooftop.
Conclusion
Application of a tank of 0.5 m3 for the rooftop of 100 m2 was the most profitable for saving 17% of water consumption, annually. Moreover, the optimal tank volume for the 200 m2 rooftop was selected to be 1.5 m3, saving about 32 % of water consumption per year. Water-saving percentages indicate the high potential of our study area for the implementation of rainwater harvesting systems.

کلیدواژه‌ها [English]

  • Genetic Algorithm
  • Optimization
  • Reliability
  • Simulation
  1. Aladenola O.O., and Adeboye O.B. 2010. Assessing the potential for rainwater harvesting. Water Resources Management 24(10): 2129-2137. https://doi.org/10.1007/s11269-009-9542-y.
  2. Assayed A., Hatokay Z., Al-Zoubi R., Azzam S., Qbailat M., Al-Ulayyan A., Bushnaq S., and Maroni R. 2013. On-site rainwater harvesting to achieve household water security among rural and peri-urban communities in Jordan. Resources, Conservation and Recycling 73: 72-77. https://doi.org/10.1016/j.resconrec.2013.01.010.
  3. BasharZ.I., Karim M.R., and Imteaz M.A. 2018. Reliability and economic analysis of urban rainwater harvesting: A comparative study within six major cities of Bangladesh. Resources, Conservation and Recycling 133: 146-154. https://doi.org/10.1016/j.resconrec.2018.01.025.
  4. DastoraniT. 2018. Quantitative and qualitative study of water that can be harvested in residential houses. P.551-562. 7th National Conference on Rainwater Harvesting systems, 20-21 Feb. 2019. Soil Conservation and Watershed Management Research Institute, Tehran, Iran. (In Persian). https://scwmwh.areeo.ac.ir/article_14647.html.
  5. Eroksuz, and Rahman A. 2010. Rainwater tanks in multi-unit buildings: A case study for three Australian cities. Resources, Conservation and Recycling 54(12): 1449-1452. https://doi.org/10.1016/j.resconrec.2010.06.010.
  6. Fewkes 1999. The use of rainwater for WC flushing: the field testing of a collection system. Building and Environment 34(6): 765-772. https://doi.org/10.1016/S0360-1323(98)00063-8.
  7. Ghisi, Bressan D.L., and Martini M. 2007. Rainwater tank capacity and potential for potable water savings by using rainwater in the residential sector of southeastern Brazil. Building and Environment 42(4): 1654-1666. https://doi.org/10.1016/j.buildenv.2006.02.007.
  8. Ghisi 2010. Parameters influencing the sizing of rainwater tanks for use in houses. Water Resources Management 24(10): 2381-2403. https://doi.org/10.1007/s11269-009-9557-4.
  9. HansonS., and Voge R.M. 2014. Generalized storage–reliability–yield relationships for rainwater harvesting systems. Environmental Research Letters 9(7): 075007. https://doi.org/10.1088/1748-9326/9/7/075007.
  10. ImteazA., Adeboye O.B., Rayburg S., and Shanableh A. 2012. Rainwater harvesting potential for southwest Nigeria using daily water balance model. Resources, Conservation and Recycling 62: 51-55. https://doi.org/10.1016/j.resconrec.2012.02.007.
  11. ImteazA., Matos C., and Shanableh A. 2014. Impacts of climatic variability on rainwater tank outcomes for an inland city, Canberra. International Journal of Hydrology Science and Technology 4(3): 177-191. https://doi.org/10.1504/ijhst.2014.067730.
  12. Jing, Zhang S., Zhang J., Wang Y., and Wang Y. 2017. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China. Resources, Conservation and Recycling 126: 74-85. https://doi.org/10.1016/j.resconrec.2017.07.027.
  13. JonesP., and Hunt W.F. 2010. Performance of rainwater harvesting systems in the southeastern United States. Resources, Conservation and Recycling 54(10): 623-629. https://doi.org/10.1016/j.resconrec.2009.11.002.
  14. LaniH.M., Syafiuddin A., Yusop Z., and bin Mat Amin M.Z. 2018. Performance of small and large scales rainwater harvesting systems in commercial buildings under different reliability and future water tariff scenarios. Science of The Total Environment 636: 1171-1179. https://doi.org/10.1016/j.scitotenv.2018.04.418.
  15. Lee K.T., Lee C.D., Yang M.S., and Yu C.C. 2000. SW-soil and water: probabilistic design of storage capacity for rainwater cistern systems. Journal of Agricultural Engineering Research 77(3): 343-348. https://doi.org/10.1006/jaer.2000.0597.
  16. LiawH., and Tsai Y.L. 2004. Optimum storage volume of rooftop rain water harvesting systems for domestic use 1. JAWRA Journal of the American Water Resources Association 40(4): 901-912. https://doi.org/10.1111/j.1752-1688.2004.tb01054.x.
  17. LondraA., Theocharis A.T., Baltas E., and Tsihrintzis V.Α. 2015. Optimal sizing of rainwater harvesting tanks for domestic use in Greece. Water Resources Management 29(12): 4357-4377. https://doi.org/10.1007/s11269-015-1064-1.
  18. MehrabadiH.R., and Saghafian B. 2012. Optimization of reservoirs of residential houses in cities. P. 1-9. Proceeding of 9th International Congress on Civil Engineering, 8-10 May. 2012. Isfahan University of Technology, Isfahan, Iran. (In Persian). https://civilica.com/doc/165886/.
  19. MehrabadiH.R., Saghafian B., and Fashi F.H. 2013b. Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions. Resources, Conservation and Recycling 73: 86-93. https://doi.org/10.1016/j.resconrec.2013.01.015.
  20. MehrabadiH.R., Saghafian B., and Sadeghian M.S. 2013a. Evaluation of the performance of rooftop surfaces of residential buildings in meeting the non-potable needs of residents in coastal cities of the country. Water Resources Engineering 6(19): 1-16. (In Persian with Engliah abstract). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=213763.
  21. Office of Research and Technical Criteria, Principles and Criteria for Designing Urban Water Supply Projects, Journal 3-117, Planning and Budget Organization. 1992.
  22. Palla, Gnecco I., Lanza L.G., and La Barbera P. 2012. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resources, Conservation and Recycling 62: 71-80. https://doi.org/10.1016/j.resconrec.2012.02.006.
  23. Rostad, Foti R., and Montalto F.A. 2016. Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major US cities. Resources, Conservation and Recycling 108: 97-106. https://doi.org/10.1016/j.resconrec.2016.01.009.
  24. Shokati, Kouchakzadeh M., and Fashi F.H. 2020. Assessing reliability of rainwater harvesting systems for meeting water demands in different climatic zones of Iran. Modeling Earth Systems and Environment 6(1): 109-114.https://doi.org/10.1007/s40808-019-00662-3.
  25. Steffen, Jensen M., Pomeroy C.A., and Burian S.J. 2013. Water supply and stormwater management benefits of residential rainwater harvesting in US cities. JAWRA Journal of the American Water Resources Association 49(4): 810-824. https://doi.org/10.1111/jawr.12038.
  26. Wang, and Zimmerman J.B. 2015. Economic and environmental assessment of office building rainwater harvesting systems in various US cities. Environmental Science & Technology 49(3): 1768-1778. https://doi.org/10.1021/es5046887.
  27. www.makhzaneab.com.
CAPTCHA Image