بررسی کارایی روش‌های طبقه‌بندی و شاخص‌های طیفی در برآورد سطح زیرکشت محصولات زراعی شهرستان شوش

نوع مقاله : مقالات پژوهشی

نویسندگان

1 کارشناس‌ارشد مهندسی منابع طبیعی- محیط‌زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران(خوزستان)، اهواز، ایران

2 دانشجوی دکتری جغرافیا و برنامه ریزی روستایی، دانشکده علوم جغرافیایی و برنامه‌ریزی، دانشگاه اصفهان، اصفهان، ایران

چکیده

برآورد سطح زیرکشت محصول، گامی اساسی در تعیین میزان تولیدات زراعی و لازمه تصمیم‌گیری در انجام مبادلات اقتصادی است. سنجش از دور، با داشتن داده‌های به‌روز و قابلیت آنالیز تصاویر ماهواره‌ای با دقتی مناسب و نیز امکان مطالعه در محدوده‌های وسیع، ابزاری کلیدی در این قبیل ارزیابی‌ها می‌باشد. هدف این پژوهش، ارزیابی کارایی روش‌های طبقه‌بندی و شاخص‌های طیفی در برآورد سطح زیرکشت محصولات زراعی شهرستان شوش در طول دوره رشد است. ابتدا تصاویر OLI ماهواره لندست ۸ با توجه به تقویم زراعی سال ۹۸-۱۳۹۷ و دوره رویشی محصولات غالب منطقه، انتخاب شدند. برای شناسایی و تفکیک محصولات زراعی در رویکرد اول، از روش‌های طبقه‌بندی شبکه عصبی مصنوعی و ماشین بردار پشتیبان و در رویکرد دوم، از شاخص NDVI استفاده شد. برای مقایسه نتایج، از آمار سطح زیرکشت سازمان جهاد کشاورزی در سال ۱۳۹۸ استفاده شد. براساس نتایج بدست آمده، سطح زیرکشت گندم، جو، برنج و ذرت در روش شبکه عصبی مصنوعی، در مقایسه با آمار سازمان جهاد کشاورزی به‌ ترتیب خطای ۱۱.۷، ۱۲.۱، ۶.۱ و ۶.۷ درصد و در روش ماشین بردار پشتیبان به ‌ترتیب خطای ۸.۹، ۶.۶، ۴.۲ و ۵.۱ درصد داشته است. اما شاخص NDVI بهترین روش برآورد سطح زیرکشت منطقه در مقایسه با آمار سازمان جهاد کشاورزی به ‌ترتیب دارای خطای ۴.۲، ۱.۲، ۲.۷ و ۱.۵ درصد بوده که نشان‌دهنده قابلیت بالا و دقت شاخص‌های طیفی در برآورد سطح زیرکشت محصولات زراعی منطقه با توجه به دوره رشد آن‌ها است. لذا پیشنهاد شد تا برای تعیین سطح زیرکشت محصولات شهرستان شوش از پیاده‌سازی شاخص‌های طیفی استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Efficiency between Classification Methods and Spectral Indices in Cropped Area Estimation of Shush County

نویسندگان [English]

  • M. Abiyat 1
  • M. Abiyat 2
  • M. Abiyat 2
1 MSc in Natural Resources Engineering- Environment, Islamic Azad University, Science and Research Branch of Tehran (Khuzestan), Ahvaz, Iran
2 PhD Student in Geography and Rural Planning, Faculty of Geographical Sciences and Planning, Isfahan University, Isfahan, Iran
چکیده [English]

Introduction
 Agriculture is the essential sector for promoting food security. Crop area estimation (CAE) can meet the requirements of the crop monitoring plan. The organizing basis of the cultivation pattern is recognizing the types of crops and examining the condition of their crop area. Shush county in Khuzestan Province has 300,000 hectares of the crop area. It is one of the agricultural hubs of Iran because it has a record annual production of more than two million tons of strategic crops such as wheat, sugar beet, and corn. CAE affects the amount of net production and shortage or surplus of produce for market steadiness. Traditional approaches for CAE are time-consuming and costly and are not widely enforceable. Remote sensing (RS) data provide good information for decision-makers by determining the crop type and the crop area. RS data has made it possible to avoid continuous reference to agricultural lands with less time and cost than another usual method and accurate CAE. Also, the use of multi-time images during the growing season of agricultural products allows the use of spectral curves when related to the crop calendar of each crop. This spectral curve is almost separate for each product and increases the ability to distinguish between products. Therefore, multi-temporal images support segregation based on multispectral images of products. The current study follows a speedy method with appropriate accuracy established on satellite image classification algorithms and spectral indices to identify and separate crops with RS data in Shush County.
Materials and Methods
 Landsat-8 data with path/row coordinates 166/38 extracted from the USGS website were used to identify and separate the cultivated lands of the region. The reason for choosing Landsat images is the relatively suitable temporal and spatial resolution, availability, and the appropriate time distribution with the product growth period. The Landsat 8 carries 2-sensors, OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor). The OLI sensor with a spatial resolution of 30 meters has 8-bands in the visible spectrum, near-infrared (NIR), short-wavelength infrared (SWIR), and a panchromatic band with a spatial resolution of 15 meters. The TIRS sensor can record thermal infrared radiation with a spatial resolution of 100 meters with the help of 2-bands in atmospheric windows of 10.6 to 11.2 micrometers for band 10 and 11.5 to 12.5 micrometers for band 11. This research used bands 1-7 of the Landsat-8 OLI sensor with a spatial resolution of 30 meters after the initial corrections of satellite images. The spectral similarity between the region's dominant crops has made it impossible to select a single image to differentiate and extract the cultivation pattern. Wheat and barley have a high spectral similarity. The peak of the greenness of these products is in the first four months of the year, which has high NDVI values at this time. Therefore, choosing a good time to separate the crops was feasible by referring to the Khuzestan Organization Agriculture-Jihad (KOAJ) and receiving the regional crops calendar in 2018-19. Then, the low-level cloud cover images on April 24, June 27, and August 30, 2019, were selected for classification based on the crop calendar. Planting, harvesting, maximum greenness, and ripening information of the dominant crops in the area were pivotal in obtaining image dates. In dates selected related to the images were considered planting, harvesting, maximum greenery, and ripening information of the region's dominant crops.
Results and Discussion
 According to the results, from total crop area in Shush county (163313.7 hectares) is allocated about 103513.2 hectares (63.4% of the county's crop area) to the ANN, about 102875.1 hectares (63.0% of the county's crop area) to the SVM, and about 102,277.3 hectares (62.6% of the county's crop area) to the NDVI, which in comparison with the KOAJ statistics, has an error of 0.11, 6.2 and 1.8%, respectively.
This difference is the similarity of the reflective spectrum in some places, which affects the separability and recognition of phenomena and increases the error in estimating the area under cultivation of different crops. The highest and lowest errors in estimating the area under cultivation in the artificial neural network method were in barley and rice crops, respectively, in the support vector machine method were in wheat and rice crops, respectively, and in NDVI index were in wheat and barley crops, respectively. The difference between the cropped area obtained from classification methods and NDVI index with cropped area statistics of Agricultural-Jihad Organization may be due to the following: First, the cultivation history of different has caused problems such as reflections of diverse agricultural lands in one image. Second, the agricultural lands in this area are small. Most of them are under one hectare. Also, the crops in this area are diverse. Third, the smallest region that the image used in the present study can distinguish is about 900 square meters, which is a large number for the agricultural lands of the study area and causes errors.
Conclusion
 The study results showed that the support vector machine method had the lowest error in CAE than the artificial neural network method, which indicates the higher accuracy of the support vector method in identifying and separating crops in the region. Comparing the area obtained from the NDVI index with the statistics of the Agricultural-Jihad Organization of Khuzestan province and evaluating the accuracy of this method indicated the higher efficiency of spectral indices in CAE for the region compared to classification methods. The NDVI index minimizes the error values of the results due to having a threshold and better identification of vegetation density. Therefore, based on the accuracy assessment results and comparing the cropped area with the KOAJ statistics, the utilization of the NDVI index provides the best CAE in the region.

کلیدواژه‌ها [English]

  • Agriculture
  • Artificial neural network
  • NDVI
  • Shush
  • Support vector machine
  1. Alavipanah, K. (2015). Application of remote sensing in earth sciences (Soil sciences). University of Tehran Press: Tehran. (In Persian). https://press.ut.ac.ir/book_765_2640.html.
  2. Asming, M.A., Ibrahim, A.M., & Abir, I.M. (2022). Processing and classification of landsat and sentinel images for oil palm plantation detection. Remote Sensing Applications: Society and Environment 26: 100747. https://doi.org/10.1016/j.rsase.2022.100747.
  3. Cabaneros, S.M., Calautit, J.K., & Hughes, B.R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling and Software 119: 285-304. https://doi.org/10.1016/j.envsoft.2019.06.014.
  4. Chanu, C.S., Elango, L., & Shankar, G.R. (2021). A geospatial approach for assessing the relation between changing land use/land cover and environmental parameters including land surface temperature of Chennai metropolitan city, India. Arabian Journal of Geosciences 14(2): 1-16. https://doi.org/10.1007/s12517-020-06409-0.
  5. Chen, Y., Lu, D., Moran, E., Batistella, M., Dutra, L.V., Sanches, I., Da Silva, R., Huang, J., Luiz, A.J., & De Oliveira, M. (2018). Mapping croplands, cropping patterns, and crop types using MODIS time series data, Journal of Applied Earth Observation and Geoinformation 69: 133-147. https://doi.org/10.1016/j.jag.2018.03.005.
  6. Deng, X., & Gibson, J. (2019). Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China, Technological Forecasting and Social Change 144: 394-400. https://doi.org/10.1016/j.techfore.2018.01.027.
  7. Derksen, D., Inglada, J., & Michel, J. (2020). Geometry aware evaluation of handcrafted superpixel-based features and convolutional neural networks for land cover mapping using satellite imagery. Remote Sensing 12(3): 513. https://doi.org/10.3390/rs12030513.
  8. Dong, Q., Liu, J., Wang, L., Chen, Z., & Gallego, J. (2017). Estimating crop area at county level on the North China Plain with an indirect sampling of segments and an adapted regression estimator. Sensors 17(11): 2638. https://doi.org/10.3390/s17112638.
  9. Ebodé, V., Braun, J.J., Nnomo, B.N., Mahé, G., Nkiaka, E., & Riotte, J. (2022). Impact of rainfall variability and land use change on river discharge in South Cameroon. Water 14(6): 941. https://doi.org/10.3390/w14060941.
  10. Garain, S., Mitra, D., & Das, P. (2021). Mapping hydrocarbon microseepage prospect areas by integrated studies of Aster processing, geochemistry and geophysical surveys in Assam-Arakan Fold Belt, NE India. Applied Earth Observation and Geoinformation 102: 102432. https://doi.org/10.1016/j.jag.2021.102432.
  11. García, J.A., Ouhbi, S., Benmouna, B., Garcia-Mateos, G., Fernández-Alemán, J.L., & Molina-Martínez, J.M. (2020). Systematic mapping study on remote sensing in agriculture, Applied Sciences 10(10): 1-29. https://doi.org/10.3390/app10103456.
  12. Gonzalez, F.A., Vuelvas, J., Correa, C.A., Vallejo, V.E., & Patino, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators, Review. Ecological Indicators 135: 108517. https://doi.org/10.1016/j.ecolind.2021.108517.
  13. Hedayati, A., Vahidnia, M.H., & Behzadi, S. (2022). Paddy lands detection using Landsat-8 satellite images and object-based classification in Rasht City, Iran. Remote Sensing & Space Science 25(1): 73-84. https://doi.org/10.1016/j.ejrs.2021.12.008.
  14. Huang, S., Tang, L., Hupy, J.P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Forestry Research 32(1): 1-6. https://doi.org/10.1007/s11676-020-01155-1.
  15. Hudait, M., & Patel, P.P. (2022). Crop-type mapping and acreage estimation in smallholding plots using Sentinel-2 images and machine learning algorithms: Some comparisons. Remote Sensing and Space Science 25(1): 147-156. https://doi.org/10.1016/j.ejrs.2022.01.004.
  16. Jain, D.K., Dubey, S.B., Choubey, R.K., Sinhal, A., Arjaria, S.K., Jain, A., & Wang, H. (2018). An approach for hyperspectral image classification by optimizing SVM using self organizing map. Computational Science 25: 252-259. https://doi.org/10.1016/j.jocs.2017.07.016.
  17. Khodakarami, L., & Soffianian, A. (2012). Application of multi temporal remote sensing for precision farming. Water and Soil Science 16(59): 215-231. (In Persian with English abstract) 1001.1.24763594.1391.16.59.16.9.
  18. Khuzestan Organization Agricultural-Jihad. (2019). Crop statistics of Khuzestan Province in 2019-2020.
  19. Kim, D., Kang, S., and Cho, S. 2020. Expected margin-based pattern selection for support vector machines. Expert Systems with Applications 139: 112865. https://doi.org/10.1016/j.eswa.2019.112865.
  20. Kundu, A., Denis, D.M., Patel, N.R., & Dutta, D. (2018). A Geo‐spatial study for analysing temporal responses of NDVI to rainfall. Tropical Geography 39(1): 107-116. https://doi.org/10.1111/sjtg.12217.
  21. Li, P., Jiang, L., & Feng, Z. (2013). Cross-comparison of vegetation indices derived from Landsat-7 enhanced thematic mapper plus (ETM+) and Landsat-8 operational land imager (OLI) sensors. Remote Sensing 6(1): 310-329. https://doi.org/10.3390/rs6010310.
  22. Liaqat, M.U., Cheema, M.J.M., Huang, W., Mahmood, T., Zaman, M., & Khan, M. (2017). Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin. Computers and Electronics in Agriculture 138: 39-47. https://doi.org/10.1016/j.compag.2017.04.006.
  23. Lyons, M.B., Keith, D.A., Phinn, S.R., Mason, T.J., & Elith, J. (2018). A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment 208: 145-153. https://doi.org/10.1016/j.rse.2018.02.026.
  24. Manickam, L., Subramanian, D., Khandal, S., & Hegde, R. (2021). Modeling and mapping of salt-affected soils through spectral indices in land plains of semi-arid agro-scological region. Indian Society of Remote Sensing 49(6): 1475-1481. https://doi.org/10.1007/s12524-021-01321-w.
  25. Martínez, J.B.G., Brown, M.M., Christodoulou, X., Alvarado, K.A., & Denkenberger, D.C. (2021). Potential of microbial electrosynthesis for contributing to food production using CO2 during global agriculture inhibiting disasters, Cleaner Engineering and Technology 4: 1-10. https://doi.org/10.1016/j.clet.2021.100139.
  26. Martínez2021, M., Ogando-Martínez, A., Troncoso-Pastoriza, F., López-Gómez, J., Febrero-Garrido, L., & Granada-Álvarez, E. (2021). Use of optimised MLP neural networks for spatiotemporal estimation of indoor environmental conditions of existing buildings. Building and Environment 205: 108243. https://doi.org/10.1016/j.buildenv.2021.108243.
  27. Mirzaei, M., Jafari, A., Gholamalifard, M., Azadi, H., Shooshtari, S.J., Moghaddam, S.M., Gebrehiwot, K., & Witlox, F. (2020). Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover. Land Use Policy 95: 103766. https://doi.org/10.1016/j.landusepol.2018.12.014.
  28. Moussavi, S.A., Abbaszadeh Tehrani, N., & Janalipour, M. (2020). Estimation of wheat area cultivation using Sentinel 2 satellite images, Case study: Sojasroud Region, Khodabandeh City, Zanjan Province. Environmental Research and Technology 7(7): 77-90. https://doi.org/10.29252/.5.7.77.
  29. Ouzemou, J.E., El Harti, A., Lhissou, R., El Moujahid, A., Bouch, N., El Ouazzani, R., El Mostafa, B., & El Ghmari, A. (2018). Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sensing Applications: Society and Environment 11: 94-103. https://doi.org/10.1016/j.rsase.2018.05.002.
  30. Pageot, Y., Baup, F., Inglada, J., Baghdadi, N., & Demarez, V. (2020). Detection of irrigated and rainfed crops in temperate areas using Sentinel-1 and Sentinel-2 time series. Remote Sensing 12(18): 3044. https://doi.org/10.3390/rs12183044.
  31. Parmar, J., Das, P., & Dave, S.M. (2021). A machine learning approach for modelling parking duration in urban land-use. Physica A: Statistical Mechanics and its Applications 572: 125873. https://doi.org/10.1016/j.physa.2021.125873.
  32. Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., & Athanasiadis, I.N. (2021). Machine learning for large-scale crop yield forecasting. Agricultural Systems 187: 103016. https://doi.org/10.1016/j.agsy.2020.103016.
  33. Phan, P., Chen, N., Xu, L., & Chen, Z. (2020). Using multi-temporal MODIS NDVI data to monitor tea status and forecast yield: A case study at Tanuyen, Laichau, Vietnam. Remote Sensing 12(11): 1814. https://doi.org/10.3390/rs12111814.
  34. Poursanidis, D., Topouzelis, K., & Chrysoulakis, N. (2018). Mapping coastal marine habitats and delineating the deep limits of the Neptune’s seagrass meadows using very high resolution Earth observation data. Remote Sensing 39(23): 8670-8687. https://doi.org/10.1080/01431161.2018.1490974.
  35. Ramírez, J.C., Restrepo-Girón, A.D., & Nope-Rodríguez, S.E. (2019). Detection of internal defects in carbon fiber reinforced plastic slabs using background thermal compensation by filtering and support vector machines. Nondestructive Evaluation 38(1): 1-11. https://doi.org/10.1007/s10921-019-0569-6.
  36. Razaque, A., Benhajfrej, M., Almiani, M., Alotaibi, M., & Alotaibi, B. (2021). Improved support vector machine enabled radial basis function and linear variants for remote sensing image classification. Sensors 21(13): 4431. https://doi.org/10.3390/s21134431.
  37. Riahi, V., Zeaiean, P., Azizpour, F., & Darouei, P. (2019). Identification and investigation of the area under cultivation in Lenjanat using Landsat 8 satellite images. Applied Researches in Geographical Sciences 19(52): 147-169. (In Persian with English abstract) https://doi.org/29252/jgs.19.52.147.
  38. Rienow, A., Mustafa, A., Krelaus, L., & Lindner, C. (2021). Modeling urban regions: Comparing random forest and support vector machines for cellular automata. Transactions in GIS 25(3): 1625-1645. https://doi.org/10.1111/tgis.12756.
  39. Roznik, M., Boyd, M., & Porth, L. (2022). Improving crop yield estimation by applying higher resolution satellite NDVI imagery and high-resolution cropland masks. Remote Sensing Applications: Society and Environment 25: 100693. https://doi.org/10.1016/j.rsase.2022.100693.
  40. Solano-Correa, Y.T., Bovolo, F., & Bruzzone, L. (2018). An approach for unsupervised change detection in multitemporal VHR images acquired by different multispectral sensors. Remote Sensing 10(4): 533. https://doi.org/10.3390/rs10040533.
  41. Teffera, Z.L., Li, J., Debsu, T.M., & Menegesha, B.Y. (2018). Assessing land use and land cover dynamics using composites of spectral indices and principal component analysis: A case study in middle Awash subbasin, Ethiopia. Applied Geography 96:109-129. https://doi.org/10.1016/j.apgeog.2018.05.015.
  42. Tomala, A.S, Raczko, E., & Zagajewski, B. (2020). Comparison of support vector machine and random forest algorithms for invasive and expansive species classification using airborne hyperspectral data. Remote Sensing 12(3): 516. https://doi.org/10.3390/rs12030516.
  43. Van-Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture 177: 105709. https://doi.org/10.1016/j.compag.2020.105709.
  44. Verma, P., Raghubanshi, A., Srivastava, P.K., & Raghubanshi, A.S. (2020). Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Modeling Earth Systems and Environment 6(2): 1045-1059. https://doi.org/10.1007/s40808-020-00740-x.
  45. Viana, C.M., Freire, D., Abrantes, P., Rocha, J., & Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment 806: 150718. https://doi.org/10.1016/j.scitotenv.2021.150718.
  46. Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., & Zhao, S. (2015). An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing 7(4): 4268-4289. https://doi.org/10.3390/rs70404268.
  47. Wang, K., Cheng, L., & Yong, B. (2020). Spectral similarity based kernel of SVM for hyperspectral image classification. Remote Sensing 12(13): 2154. https://doi.org/10.3390/rs12132154.
  48. Wang, M., Wander, M., Mueller, S., Martin, N., & Dunn, J.B. (2022). Evaluation of survey and remote sensing data products used to estimate land use change in the United States: Evolving issues and emerging opportunities, Environmental Science and Policy 129: 68-78. https://doi.org/10.1016/j.envsci.2021.12.021.
  49. Yepez, S., Laraque, A., Martinez, J.M., De Sa, J., Carrera, J.M., Castellanos, B., Gallay., M., & Lopez, J.L. (2018). Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River, Venezuela. Comptes Rendus Geoscience 350(1-2): 20-30. https://doi.org/10.1016/j.crte.2017.08.004.
  50. Yi, Z., Jia, L., & Chen, Q. (2020). Crop classification using multi-temporal Sentinel-2 data in the Shiyang River Basin of China. Remote Sensing 12(24): 4052. https://doi.org/10.3390/rs12244052.
  51. Zafari, A., Zurita-Milla, R., & Izquierdo-Verdiguier, E. (2019). Evaluating the performance of a random forest kernel for land cover classification. Remote Sensing 11(5): 575. https://doi.org/10.3390/rs11050575.
  52. Zare, M., Drastig, K., & Zude-Sasse, M. (2020). Tree water status in apple orchards measured by means of land surface temperature and vegetation index (LST-NDVI) trapezoidal space derived from Landsat 8 satellite images. Sustainability 12(1): 70. https://doi.org/10.3390/su12010070.
  53. Zhang, H., Li, Q., Liu, J., Shang, J., Du, X., Zhao, L., Wang, N., & Dong, T. (2017). Crop classification and acreage estimation in North Korea using phenology features. GIScience & Remote Sensing 54(3): 381-406. https://doi.org/10.1080/15481603.2016.1276255.
  54. Zhang2019, L., Liu, Z., Liu, D., Xiong, Q., Yang, N., Ren, T., Zhang, C., Zhang, X., & Li, S. (2019). Crop mapping based on historical samples and new training samples generation in Heilongjiang Province, China. Sustainability 11(18): 5052. https://doi.org/10.3390/su11185052.
  55. Ziaiean, P., Bidhendi, S.L., & Eskandari Nodeh, M. (2010). Mapping and acreage estimating of rice agricultural land using radarsat a satellite images. Physical Geography Research Quarterly 41(68): 45-58. (In Persian with English abstract) https://jphgr.ut.ac.ir/article_21495.html?lang=fa.
CAPTCHA Image