ارزیابی کارآیی مدل SSM در شبیه‌سازی رشد و نمو گندم تحت شرایط تنش آبی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده مهندسی زراعی، ساری، ایران

2 استاد هواشناسی کشاورزی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 دانشیار گروه زراعت، دانشکده تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

4 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

ارزیابی کارآیی مدل SSM، در شبیه­سازی رشد و نمو گندم آبی رقم مهرگان تحت شرایط تنش آبی، با انجام آزمایشی در قالب طرح بلوک­های کامل تصادفی (CRBD) در 3 تکرار با پنج  تیمار آزمایشی شامل؛ ]شرایط بدون تنش (NS)، تنش در مرحله آبستنی (WSB)، تنش در مرحله گلدهی (WSF)، تنش در مرحله شیری شدن (WSM) و تنش در مرحله خمیری شدن دانه (WSD)[، در ورامین صورت گرفت. شبیه­سازی رشد و نمو با بهره­گیری از مدل گیاهی SSM-Wheat انجام شد. بر پایه یافته­ها، میان مقادیر مشاهده شده و شبیه­سازی شده وقوع مراحل فنولوژیکی گندم در شرایط بروز تنش تفاوت چندان زیادی مشاهده نشد. به­اختصار، مقادیر مشاهده شده روز تا پایان پر شدن دانه در شرایط بدون تنش، تنش در مراحل آبستنی، گلدهی، شیری شدن و خمیری شدن دانه به­ترتیب 222، 219، 219، 221، 221 روز، مشاهده شد که با مقادیر شبیه­سازی شده آنها به­ترتیب 224، 221، 220، 221، اختلاف بسیار کمی داشت. همچنین تفاوت اندک در مقادیر مشاهده شده عملکرد دانه به­ترتیب (6/5783، 5423، 5160، 5006 و 5100 کیلو گرم در هکتار) و مقادیر شبیه­سازی شده آنها به­ترتیب (4/5630، 5220، 4920، 4680 و 4880 کیلو گرم در هکتار)، نشان از کارایی مطلوب مدل SSM در درک بروز تنش آبی داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the SSM Model Efficiency in Simulating the Wheat Growth under Water Stress Conditions

نویسندگان [English]

  • S. Shiukhy Soqanloo 1
  • M. Mousavi Baygi 2
  • B. Torabi 3
  • M. Raeini Sarjaz 4
1 Department of Water Engineering, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Iran
2 Agrometeorology, Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Department of Agronomy,, Faculty of crop production, Gorgan, Iran
4 Department of Water Engineering, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Iran
چکیده [English]

Introduction
Wheat (Triticum aestivum L.) has become very important as a valuable strategic product with high energy level. The importance of investigating environmental stresses and their role in predicting and evaluating the growth and crops yield is essential. A wide range of plant response to stress is extended to morphological, physiological and biochemical responses. Considering the rapid advancement in computer model development, plant growth models have emerged as a valuable tool to predict changes in production yield. These growth simulation models effectively incorporate the intricate influences of various factors, such as climate, soil characteristics, and management practices on crop yield. By doing so, they offer a cost-effective and time-efficient alternative to traditional field research methods.
 
Material and Methods
This research was conducted in the research farm of Varamin province, which has a silty loam soil texture. The latitude and longitude of the region are 35º 32ʹ N and 51º 64ʹ E, respectively. Its height above sea level is 21 meters. According to Demarten classification, Varamin has a temperate humid climate. The long-term mean temperature of Varamin is 11.18 ° C and the total long-term rainfall is 780 mm. In this study, in order to simulate irrigated wheat cv. Mehregan growth under drought stress, an experimental based on completely randomized blocks (CRBD) including: non-stress as control (NS), water stress at booting stage (WSB), water stress at flowering stage (WSF), water stress at milking stage (WSM) and water stress at doughing stage (WSD) with three replications during growth season 2019-2020 was carried out in Varamin, Iran. Crop growth simulation was done using SSM-wheat model. This model simulates growth and yield on a daily basis as a function of weather conditions, soil characteristics and crop management (cultivar, planting date, plant density, irrigation regime).
 
Results and Discussion
Based on the results, the simulation of the phenological stages of irrigated wheat cv. Mehregan under water stress condition using SSM-wheat model showed that there was no difference between observed and simulated values. Summary, the values of day to termination of seed growth (TSG) were observed under non- stress, stress in the booting stage, flowering, milking and doughing of the grains, 222, 219, 219, 221, 221 days, respectively andsimulation values with 224, 221, 220, 221, respectively. However, with their simulation values, there were slight differences with 224, 221, 220, 221, respectively. Acceptable values of RMSE (11.7 g.m-2) and CV (3.5) indexes showed the high ability of the SSM model in simulating the grain yield of irrigated wheat cv. Mehregan under water stress conditions. Grain yield values were observed in non-stress conditions of 5783, water stress in booting, flowering, milking and doughing of the grain stages in 5423, 5160, 5006 and 5100 kg. h-1, respectively. While the simulated values were 5630, 5220, 4920, 4680 and 4880 kg. h-1, respectively. Based on the findings, observed and simulated values of leaf area index (LAI) were observed under water stress condition in the booting, flowering, milking and doughing of the grain stages (4.3 and 4.47), (4.33) and 4.46), (4.4 and 4.57) and (4.4 and 4.58) cm-2, respectively. Evaluation of the 1000-grain weight of irrigated wheat cv. Mehregan under the water stress showed that the SSM model was highly accurate. RMSE (4.6 g.m-2) and CV (1.8) values indicate the ability of the SSM model to simulate the 1000-grain weight of irrigated wheat cv. Mehregan. Also, the simulated values of the harvest index were 34.7 % in non-stress conditions, which decreased by 6 % compared to the observed value. Harvest index values were observed under water stress conditions in the in the booting, flowering, milking and doughing of the grain stages in 30.2, 29.3, 29.9 and 29.5 %, respectively. Compared to its observed values, it was reduced by 3, 3.5, 5, and 5.5 %, respectively.
 
Conclusion
Based on the findings, the slight difference between the observed and simulated values demonstrates the SSM model's capability to accurately capture water stress impacts on the phenological stages, grain yield, and yield components of irrigated wheat cv. Mehregan during critical growth stages, including booting, flowering, milking, and doughing. The results indicate that the SSM model is effective in simulating wheat growth under water stress conditions, showcasing its potential as a valuable tool for modeling irrigated wheat growth. The model's ability to account for water stress and its effects on various growth parameters makes it a reliable and efficient tool for predicting crop performance in water-limited environments.

کلیدواژه‌ها [English]

  • Crop model
  • Flowering
  • Grain yield
  • Simulation
  • Wheat
  1. Abdollahi, A. (2015). Investigation of the effect of sowing date and density on grain yield and yield components of bread wheat in rainfed conditions. Iranian Journal of Rainfed Agriculture, 4(2), 99-114. (In Persian with English abstract)
  2. Amiri Deh-ahmadi, R., Parsa, M., & Gnajali, A. (2010). The effect of drought stress at different phonological stages on morphological characteristics and yield components of chickpea (Cicer arientinum) in greenhouse conditions. Iranian Journal of Crop Research, 8(2), 157-166. (In Persian). https://doi.org/10.22067/GSC.V8I1.7406
  3. Barlow, K.M., Christy, B.P., Oʹleary, G.J., Riffkin P.A., & Nuttall, J.G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production. A review. Field Crops Research, 171, 109-119. https://doi.org/ 1016/j.fcr.2014.11.010
  4. Baygi, Z., Safizadeh, S., Shirani Rad, A.M., Valadabadi S.A., & Jafarinejad. A. (2016). Seed yield and yield component of some spring wheat varieties as affected by different sowing dates in Neishabour. Journal of Crop Ecophysioology, 11(4), 905-922. (In Persian with English abstract)
  5. Delghandi, M., Andarzian, B., Broomandnasab, S., Massah Bovani, A., & Javaheri., E. (2014). Evaluation of DSSAT 4.5-CSM-CERES-wheat to simulate growth and development, yield and phenology stages of wheat under water deficit condition (Case study: Ahvaz region). Journal of Water and Soil, 28(1), 82-91. (In Persian with English abstract)
  6. Fahad, Sh., Bajwa, A., Nazir, U., Anjum, Sh. A., Farooq, A., Zohaib, A., Sadia, Sh., Nasim, W., Adkins, S., Shah Saud, Sh., Ihsan, M.Z., Alharby, H., Wu, Ch., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress. Plant Responses and Management Options, 8: 1147-1161. https://doi.org/10.3389/fpls.2017.01147
  7. Francia, E., Tondelli, A., Rizza, F., Badeck, F.W., Thomas, W.T.B., van Eeuwijk Romagosa, I., Stanca, A. M., & Pecchioni, N. (2013). Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy, 8(1), 1-8. https://doi.org/4081/ija.2013.e1
  8. Gonzalez, A., Bermejo, V., & Gimeno, B.S. (2010). Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. Journal of Agricultural Science, 48, 1-10. https://doi.org/1017/S0021859610000031
  9. Halim, Gh., Yahya, A., & Shakeri, A. (2017). Evaluation of yield, yield components and stress tolerance indices in bread wheat cultivars in conditions of cessation of irrigation after flowering. Journal of Production and Processing of Crops and Horticulture, 3(4): 121-134. (In Persian). https://doi.org/22077/ESCS.2019.2822.1733
  10. Kalanaki, M., Karandish, F., & Saberali, S. F. (2018). Effect of integrated management of irrigation and planting date on maize water use efficiency by using the DSSAT model. Journal of Water Research in Agriculture (Soil and Water Sciences), 31(4), 509-522. (In Persian with English abstract)
  11. Ma, Y., Celeste Dias, M., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Chemistry, 11, 1-18. https://doi.org/3389/fpls.2020.591911
  12. Mahmoudi, H., & Afkari, A. (2020). Physiological traits of wheat in drought stress conditions. Scientific Journal of Crop Physiology, 12(46), 131-156.
  13. Mehraban, A., Tobe, A., Gholipour, A., Amiri, E., Ghafari, A., & Rostaii, M. (2019). The effects of drought stress on yield, yield components, and yield stability at different growth stages in bread wheat cultivar (Triticum aestivum). Polish Journal Environmental Studies, 28(2), 739-746. https://doi.org/10.15244/pjoes/85350
  14. Mokari, M., Abedinpour, M., & Dehghan, H. (2020). The effect of drought stress and sowing date on grain yield and water use efficiency in autumn wheat in Kashmar region. Journal of Water Research in Agriculture, 34(2), 167-189. (In Persian with English abstract). https://doi.org/10.22092/jwra.2020.122256
  15. Nah-Bandani, A.R., Soltani, A., & Darvishirad, P. (2017). The effect of end-of-season drought stress on water consumption, growth and yield of chickpeas. Scientific Journal of Plant Ecophysiology, 7(23), 17-27. (In Persian).
  16. Paknejad, F., Moayeri Pour, Sh., Aghayari, F., & Ilkaei, M.N. (2017). Simulation of maize yield with different levels of nitrogen by using DSSAT model. Journal of Crop Ecophysiology, 11(3), 503-518. (In Persian with English abstract)
  17. Pirttioja, N., Palosuo, T., Fronzek, S., Raisanen, J., Rotter R.P., & Carter, R.T. (2019). Using impact response surfaces to analyse the likelihood of impacts on crop yield under probabilistic climate change. Agricultural and Forest Meteorology, 264, 213-224. https://doi.org/10.1016/j.agrformet.2018.10.006
  18. Pullens, J.W.M., Sharif, B., Trnka, M., Balek, J., Semenov, M.A., & Olesen, J.E. (2019). Risk factors for European winter oilseed rape production under climate change. Agricultural and Forest Meteorology, 273, 30-39. https://doi.org/10.1016/j.agrformet.2019.03.023
  19. Saeidi, M., & Abdoli, M. (2015). Effect of Drought Stress during Grain Filling on Yield and Its Components, Gas Exchange Variables, and Some Physiological Traits of Wheat Cultivars. Journal of Agricultural Science and Technology, 17, 885-898.
  20. Saeidi, M., Moradi, F., Ahmadi, A., Spehri, R., Najafian, G., & Shabani, A. (2010). The effects of terminal water stress on physiological characteristics and sink source relations in two bread wheat (Triticum aestivum) Cultivars. Iranian Journal of Crop Science, 12, 392-408. (In Persian with English abstract)
  21. Shiukhy-Soqanloo, S., Mousavi-Baygi, M., Torabi, B., & Raeini-Sarjaz, M. (2021). Evaluation of climate change effects on irrigated wheat CV. Mehregan yield under drought stress condition (Case study: Varamin). Journal of Agricultural Meteorology, 9(2), 15-28. (In Persian with English abstract). https://doi.org/10.22125/agmj. 2021.297373.1121
  22. Shiukhy-Soqanloo, S., Raeini, M., & Chalavi, V. (2015). Colored plastic mulch microclimates affect strawberry fruit yield and quality. International Journal of Biometeorology, 59(8), 1061-1066. https://doi.org/10.1007/s00484-014-0919-0
  23. Soltani, A., & Sinclair, T.R. (2011). A simple model for chickpea development, growth and yield. Field Crop Research, 124, 252-260. https://doi.org/10.1016/S0378-4290(99)00017-9
  24. Soltani, A., & Sinclair, T.R. (2012). Modeling physiology of crop development, growth and CAB International, Wallingford, UK.
  25. Wei, Y., Jin, J., Jiang, Sh., Ning Sh., & Liu, L. (2018). Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei plain, China. Agronomy, 9, 1-16. https://doi.org/10.3390/ agronomy8070097
  26. Zali, H., Hasanloo, T., Sofalian, O., & Asghari, A. (2020). Evaluation of drought stress effect on seed oil yield and fatty acid composition in canola (Brassica napus) cultivars. Environmental Stresses on Crop Sciences, 3(13), 735-747. https://doi.org/10.22077/ESCS.2020.2205.1552

 

CAPTCHA Image