دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه جغرافیا، دانشکده علوم انسانی، دانشگاه زنجان، زنجان، ایران

2 گروه جغرافیا، دانشگاه خوارزمی، تهران، ایران

10.22067/jsw.2024.87969.1408

چکیده

هدف از انجام تحقیق حاضر بررسی نقش پرارتفاع عربستان بر بارش­های فرین دوره سرد سال ایران است. به این منظور با استفاده از داده­های ایستگاهی بارش روزانه ایران، روزهای با بارش فرین استخراج شد. 7 الگو با بیشترین بارش فرین و بیشترین همگنی مکانی جهت تحلیل­های سینوپتیکی انتخاب گردید. با استفاده از داده­های ERA5 نقشه­های ارتفاع ژئوپتانسیل و رطوبت ویژه ترسیم گردید. نتایج حاکی از آن است که پرارتفاع عربستان براساس موقعیت مکانی و تعامل با الگوهای گردشی عرض میانی نقش مهمی در تأمین رطوبت بارش­های فرین فصل سرد سال ایران دارد. موقعیت مکانی و میزان گسترش آن تحت­تأثیر نفوذ حاره­ای سامانه­های غربی در 2 تراز زیرین و میانی تغییر می­یابد. بیشترین حاکمیت بر روی ایران را در تراز زیرین دارد زیرا در ترازهای بالاتر به علت نفوذ بیشتر شاخه جنوبی بادهای غربی، موقعیتی جنوبی­تر یافته و اثرات آن بر ایران کاهش می­یابد. طوری­که از تراز 600 هکتوپاسکال به بالا تأثیری بر ایران ندارد. تعامل پرارتفاع عربستان با سامانه­های عرض میانی منجر به شکل­گیری رودخانه جوی با منشا حاره­ایی می­شود. در عین­حال عاملی مهم در انتقال رطوبت به شرق آفریقای مرکزی در منطقه حاره می­باشد که محل منشاء شکل­گیری رودخانه جوی است. در سطح زمین پرارتفاع عربستان رطوبت دریای عرب و خلیج فارس را به نواحی جنوب، جنوب­غرب، غرب و شمال غرب می­رساند و مانع از ورود گسترده کم­فشار ترکیه به شمال­غرب و غرب ایران می­شود و با حاکمیت بر روی دریای سرخ جنوبی مانع ورود کم­فشار سودان به خاورمیانه است. این نتیجه نشان می­دهد که کم­فشار سودان و مدیترانه عامل اصلی تمام بارش­های فرین فراگیر فصل سرد سال ایران نیستند. اگرچه پرارتفاع عربستان مانع ورود سامانه­های بارشی به درون ایران است اما در تأمین رطوبت بارش­های فرین فراگیر مناطق جنوب و نیمه غرب ایران هم به‌صورت ایجاد رودخانه جوی در تعامل با سردچال عرض میانی و هم انتقال رطوبت از طریق جریان واچرخندی خود به درون ایران نقش بسیار مهمی دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effects of the Arabia Anticyclone (AA) on the Extreme and Widespread Precipitation of the Cold Season in Iran

نویسندگان [English]

  • H. Fahimi 1
  • A. Faraji 1
  • B. Alijani 2

1 Department of Geography, Faculty of Humanities, University of Zanjan, Zanjan, Iran

2 Department of Geography, Kharazmi University, Tehran, Iran

چکیده [English]

Introduction
A subtropical high system that significantly impacts the Iranian climate is the Arabia Anticyclone (Raziei, 2012). This high-pressure system is located southeast of the Red Sea, over the Arabian Peninsula and the Arabian Sea. It is one of the semi-permanent centers in the lower levels of the atmosphere, and its influence leads to notable climate changes and characteristics in the region (Karimi, 2016). This system is a component of atmospheric circulation affecting cold-period precipitation in Iran (Karimi et al., 2021); due to its dynamic structure, it has a great ability to provide humid air, especially in the lower layers (Mohammadi & Lashkari, 2018). So far, some studies have been conducted on subtropic high's effect on the Iranian climate, but its impact on the occurrence of precipitation in Iran, especially during the cold period of the year, has received less attention. Therefore, in this study, we aimed to examine the role of the Arabia Anticyclone (AA) subtropical high in the pervasive extreme precipitation during the cold season in Iran. By analyzing its influence at different atmospheric levels, we sought to gain a clearer understanding of how this system affects precipitation patterns in Iran. The study also explores the changes in the AA at various atmospheric levels and its relationship with other atmospheric circulation systems, as well as how these factors contribute to the occurrence of extreme precipitation events in the region.
 
Materials and Methods
Daily precipitation data of Iranian synoptic stations from 1989 to the end of 2020 were extracted from the Meteorological Organization of Iran. Based on the relative index method, the 95th percentile index of extreme precipitation for all days and all the stations were calculated and extracted by MATLAB software. The criterion was as follows: If at least 20% of the synoptic stations in Iran have extreme precipitation (in case of spatial homogeneity), the days with pervasive/extreme precipitation were obtained, which amounted to 450 days in the entire period. The isohyetal map of 450 days of extreme/pervasive precipitation was drawn in Surfer software to identify the spatial homogeneity of days with extreme/pervasive precipitation because days with this kind of precipitation did not necessarily have spatial homogeneity. The 450 days with extreme/pervasive precipitation were arranged in ascending order, and 7 patterns with the highest extreme precipitation and the highest spatial homogeneity during the cold period of the year (October-March) were selected. Upper atmospheric data of the selected days were then specified to plot and analyze the synoptic maps. The required atmospheric data were geopotential altitude (meter), wind speed (m/s), wind direction, specific humidity (g/km), and average sea-level pressure. The data used were ERA5 data extracted from https://www.ecmwf.int. The data were extracted at three levels: lower, middle, and upper. To synoptically analyze the selected patterns using the selected upper atmosphere data, the following maps were plotted in Grads software:

A) Combined map of geopotential altitude and winds was plotted at the selected levels to determine the geographical location of the subtropical high, its displacement at different levels of the troposphere, its penetration, and its impact on Iran.
B) Combined maps of specific humidity, geopotential altitude, and wind were plotted in order to identify the role of the subtropical high in the transfer of humidity and its transfer to Iran at different levels.

 
Conclusion
In selected patterns, the AA with its anticyclonic current and passing through tropical warm waters, leads to the transfer of tropical humidity to subtropical and extratropical regions. At different atmospheric levels, the location and establishment of the Anticyclone central nucleus and its degree of expansion towards the north and west are determined by the tropical penetration of the cut off lows and the western trough. The AA has the most dominance over Iran in the lower level. In fact, in the lower level, Iran is dominated by two patterns of cut off low in the western and northern regions and the AA in the southern and eastern regions.
Due to the greater penetration of the southern branch of the westerlies and the orbitalization of the western currents in the middle level, the AA is displaced eastward and southward. The interaction and accompaniment of the AA and the mid-latitude cut off low form an atmospheric river with a tropical origin. The AA plays an important role in transferring the atmospheric river to Iran and its humidity feeding. On the maps, the southerly and easterly displacement of the AA Arabia is an important factor in the lack of formation of an atmospheric river in East Central Africa. By transferring tropical humidity to Iran, the humidity of the extreme pervasive precipitation is supplied. Another major role played by the AA is to strengthen the ITCZ humidity in East Central Africa, where tropical humidity ascends through the cut off low, West trough, and jet streams. The AA takes the Indian Ocean humidity to eastern Central Africa with its anticyclonic movement. At the ground level, the AA diverts humidity from the Arabian Sea and the Persian Gulf to the western and northwestern regions, preventing Turkey low from entering the western and southwestern regions of Iran. Furthermore, by entering the South Red sea, prevents the entry of the Sudan low into the Middle East and prevents the entry of precipitation systems into Iran. However, in supplying humidity to the extreme pervasive precipitation of Iran, it plays a very important role both by creating an atmospheric river in interaction with the mid-latitude cut off low and by transferring humidity through its anticyclonic flow.

کلیدواژه‌ها [English]

  • Arabia anticyclone
  • Atmospheric river
  • Extreme and widespread rainfall
  • Iran

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. A de Vries, A.J., Tyrlis, E., Edry, D., Krichak, S.O., Steil, B., & Lelieveld, J. (2013). Extreme precipitation events in the Middle East: dynamics of the Active Red Sea Trough. Journal of Geophysical Research: Atmospheres118(13), 7087-7108.
  2. Almazroui, , Kamil, S., Ammar, K., Keay, K., & Alamoudi, A.O. (2016). Climatology of the 500-hPa Mediterranean storms associated with Saudi Arabia wet season precipitation. Climate Dynamics, 47(9), 2029-2042.https://doi.org/10.1002/jgrd.50569
  3. A de Vries, A.J., Feldstein, S.B., Riemer, M., Tyrlis, E., Sprenger, M., Baumgart, M., & Lelieveld, J. (2016). Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Quarterly Journal of the Royal Meteorological Society142(697), 1862-1880. https://doi.org/10.1002/qj.2781
  4. Alijani, B., Mirzaee, N., & Jahedi, A. (2002). A Synoptic analysis comprehensive and heavy rainfall in Iran: case study16-31 st 2019. Climate Change and Climate Disaster, 1(2), 70-114. (In Persian)
  5. Alijani, B., Toulabi Nejad, M., & Karbalaie Darei, A. (2019). Investigating the effects of global warming on subtropical high pressure. Physical Geography Research, 51(1), 33-50. (In Persian). https://doi.org/10.22059/jphgr.2019.258677.1007223
  6. Alijani., B. (1997).Climate of Iran, Payam Noor University Publications. (In Persian)
  7. Alipour, Y., Hedjazizadeh, Z., Akbary, M., & Saligheh, M. (2018). A study of the subtropical high pressure 500 hPa level changes in the Iran's atmosphere with emphasis on climate change. Journal of Natural Environmental Hazards, 7(18), 1-16. (In Persian). https://doi.org/22111/jneh.2017.3206
  8. Asakereh, H., & Fataheyan, M. (2019). Analysis of annual changes of subtropical high pressure ridge over Iran. Geography and Planning, 23(69), 191-211. (In Persian). https://www.magiran.com/p2087446
  9. Barati, Gholamreza., & Lashkari, H. (2018). the role of convergence of pressure systems on the occurrence of dust storms in Khuzestan province. Geography and Development Quarterly, 9(22), 39-56. (In Persian)
  10. Bishop, D.A., Williams, A.P., Seager, R., Fiore, A.M., Cook, B.I., Mankin, J.S., & Rao, M.P. (2019). Investigating the causes of increased twentieth-century fall precipitation over the southeastern United States. Journal of Climate, 32(2), 575-590. https://doi.org/10.1175/JCLI-D-18-0244.1
  11. Borna., R. (2016). Identification of synoptic patterns of heavy rainfall in Maron basin (case study: rainfall on November 29, 2012). Quarterly Journal of Physical Geography, 36, 47-59. (In Persian)
  12. Boron, A., Zohoriyan Pordel, M., Lashkari, H., Shakiba, A., & Mohamadi, Z. (2019). Synoptic analysis of Saudi Arabian sub-tropical high pressure in height waves of Khuzestan Province. Journal of Meteorology and Atmospheric Science, 2(1), 55-67. (In Persian)
  13. Borzoi, F., & Azizi, G. (2015). Suggesting a simple criterion to estimate heavy rainfall in Iran. Physical Geography Research, 47(3), 347-365. (In Persian). https://doi.org/10.22059/jphgr.2015.55335
  14. Choi, W., & Kim, K.Y. (2019). Summertime variability of the western North Pacific subtropical high and its synoptic influences on the East Asian weather. Scientific Reports, 9(1), 1-9. https://doi.org/10.1038/s41598-019-44414-w
  15. Colbert, A.J., & Soden, B.J. (2012). Climatological variations in North Atlantic tropical cyclone tracks. Journal of Climate, 25(2), 657-673. https://doi.org/10.1175/JCLI-D-11-00034.1
  16. Dadashi Roudbari, A., & Kashki, A. (2018). Synoptic evaluation heavy precipitation Khorasan Razavi Province March 29, 2007. Geographical Planning of Space, 8(29), 75-90. (In Persian)
  17. Davis, N.A., & Birner, T. (2013). Seasonal to multidecadal variability of the width of the tropical belt. Journal of Geophysical Research: Atmospheres, 118(14), 7773-7787.https://doi.org/10.1002/jgrd.50610
  18. Farajzadeh Asl, M., Karimi Ahmadabad, M., Ghaemi, H., & Mobasheri, M.R. (2009). Mechanism of water vapor transport in winter rainfall over the West of Iran (A case study: 1-7 January 1996). The Journal of Spatial Planning, 13(1), 193-217. (In Persian).http://hsmsp.modares.ac.ir/article-21-7869-en.html
  19. Halabian, A.H., & Shabankari, M. (2012). The role of subtropical high pressure in the spatial daily precipitation distribution in Iran. Geography and Environmental Sustainability, 1(1), 1-21. (In Persian)
  20. Karimi, M., Khoshakhlagh, F., shamsi por, A.A., & Noruzi, F. (2019). Arabian subtropical high pressure circulation patterns in the middle troposphere and its relationship with Iran's Precipitation. Journal of Geography and Planning, 23(69), 233-255. (In Persian)
  21. Karimi, M., Noruzi, F., Jafari, M., Khoshakhlagh, F., & Shamsipour, A. (2022). Arabian anticyclone’s spatial variations at 850 hPa simultaneously with precipitation of October to March in Iran. Physical Geography Research, 53(4), 509-529. (In Persian). https://doi.org/10.22059/jphgr.2022.330917.1007647
  22. Khoshal, G., Khosravei, M., & Nazareipoor, H. (2009). Identification humidity resources and course of super heavy precipitation in Bushehr Province. Geography and Development, 7(16), 7-28. (In Persian). https://doi.org/10.22111/gdij.2009.1173
  23. Lamb, H.H. (1972). Climate, Present, Past and Future: Fundamentals and climate now”, Volume I of Climate
  24. Lashkari, H., & Esfandiari, N. (2021). Synoptic and thermodynamic patterns of atmospheric rivers associated to heavy precipitation in the cold period of Iran. Journal of Natural Environmental Hazards, 10(29), 125-144. (In Persian). https://doi.org/10.22111/jneh.2020.33830.165
  25. Lashkari, H., Matkan, A.A., Azadi, M., & Mohammadi, Z. (2017). Synoptic analysis of the role of Saudi Arabia subtropical high pressure subtropical and polar jet streams and severe droughts in South and South West of Iran. Journal of Researches in Earth Sciences, 8(2), 141-163. (In Persian)
  26. Lashkari, H., Matkan, A., Azadi, M., & Mohamadi, Z. (2018). Synoptic patterns lead to premature precipitation in the South and South West of Iran during the period (1979-2015). Geography and Planning, 22(64), 247-266. (In Persian)
  27. Lashkari,, & Mohamadi, Z. (2015). The role of Saudi Arabian sub-tropical high pressure on the rainfall systems on south and southwest Iran. Physical Geography Research Quarterly, 47(1), 73-90. (In Persian). https://doi.org/10.22059/jphgr.2015.53679
  28. Lashkari, H., & Mohammadi, Z. (2019). Study on the role of annual movements of Arabian subtropical high pressure in the late start of precipitation in southern and southwestern Iran. Theoretical and Applied Climatology, 137(3), 2069-2076. https://doi.org/10.1007/s00704-018-2716-x
  29. Lau, W.K., & Kim, K.M. (2015). Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proceedings of the National Academy of Sciences, 112(12), 3630-3635.‏ https://doi.org/10.1073/pnas.1418682112
  30. Lee, E.J., Yeh, S.W., Jhun, J.G., & Moon, B.K. (2006). Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon. Geophysical Research Letters, 33(21). https://doi.org/10.1029/2006GL027474
  31. Lee, S.S., Seo, Y.W., Ha, K.J., & Jhun, J.G. (2013). Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime. Asia-Pacific Journal of Atmospheric Sciences, 49(2), 171-182.‏ https://doi.org/10.1007/s13143-013-0018-x
  32. Li, L., Li, W., & Kushnir, Y. (2012). Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Climate Dynamics, 39(6), 1401-1412. https://doi.org/10.1007/s00382-011-1214-y
  33. Lu, R. (2001). Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. Journal of the Meteorological Society of Japan. Ser. II, 79(3), 771-783. https://doi.org/10.2151/jmsj.79.771
  34. Majidirad, N., & Rahimi Herabadi, S. (2021). The behavior of spatio-temporal spatial elevation changes and their impact on the intensification of droughts, with emphasis on the management of rural systems responses. Climate Change Research, 2(5), 59-80. https://doi.org/30488/ccr.2020.261823.1032
  35. Masoudian., (2012). The weather of Iran.Mashhad: Sharia Tos Publications. (In Persian)
  36. Mitro, S.U.K.A.R.N.I. (2010). The influence of the subtropical high-pressure systems on rainfall and temperature distribution in Suriname and implications for rice production in the Nickerie District. The University of the West Indies
  37. Mofidi, A., (2005).Synoptic climatology of torrential rains originating from the Red Sea in the Middle East.Geographical Research, 4(75),71-93. (In Persian)
  38. Khorshiddoust, M., Mohammadi, G.H., Hosseini Sadr, A., Javan, K., & Jamali, A. (2014). Synoptic analysis of effective factors on dust frequency in West of Iran. Journal of Geography and Planning, 17(46), 47-66.
  39. Kumar, K., & Phanikumar, D.V. (2019). Influence of tropical-extratropical interactions on the dynamics of extreme rainfall event: A case study from Indian region. Dynamics of Atmospheres and Oceans, 85, 28–40. https://doi.org/10.1016/j.dynatmoce.2018.12.002
  40. Mohammadi, Z., & Lashkari, H. (2018). Effects of spatial movement of Arabia subtropical high pressure and subtropical Jet on synoptic and thermodynamic patterns of intense wet years in the south and south west Iran. Physical Geography Research, 50(3), 491-509. (In Persian). https://doi.org/10.22059/jphgr.2018. 249422.1007165
  41. Mohammadi, Z., Lashkari, H., & Mohammadi, M.S. (2021). Synoptic analysis and core situations of Arabian anticyclone in shortest period precipitation in the south and southwest of Iran. Arabian Journal of Geosciences, 14(12), 1-18. https://doi.org/10.1007/s12517-021-07572-8
  42. Movahedi, S., & Kashki, A. (2015).Investigating the spatio-temporal extent of the tropical cyclone in the Northern Hemisphere. Geography and Environmental Planning, 3(59), 209-224.
  43. Mostafaii, H., Alijani, B., & Saligheh, M. (2016). Synoptic analysis of widespread heavy rains in Iran. Journal of Spatial Analysis Environmental Hazarts, 2(4), 65-76. (In Persian). http://jsaeh.khu.ac.ir/article-1-2533-en.html
  44. Nieto Ferreira, R., & Rickenbach, T.M. (2020). Effects of the north Atlantic subtropical high on summertime precipitation organization in the southeast United States. International Journal of Climatology, 40(14), 5987-6001. https://doi.org/10.1002/joc.6561
  45. Pepler, A., Dowdy, A., & Hope, P. (2019). A global climatology of surface anticyclones, their variability, associated drivers and long-term trends. Climate Dynamics, 52(9), 5397-5412. https://doi.org/10.1007/s00382-018-4451-5
  46. Rastgoo,, & Ranjbar Saadatabadi, A. (2018). Study of heavy and extreme rain in Bushehr province in term of synoptic- dynamic. Journal of Meteorology and Atmospheric Science, 1(1), 77-96.
  47. Raziei, T., Mofidi, A., Santos, J.A., & Bordi, I. (2012). Spatial patterns and regimes of daily precipitation in Iran in relation to large‐scale atmospheric circulation. International Journal of Climatology, 32(8), 1226-1237.
  48. Rodwell, M.J., & Hoskins, B.J. (2001). Subtropical anticyclones and summer monsoons. Journal of Climate, 14(15), 3192-3211. https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2
  49. Saaroni, H., & Ziv, B. (2000). Summer rain episodes in a Mediterranean climate, the case of Israel: climatological–dynamical analysis. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(2), 191-209. https://doi.org/10.1002/(SICI)1097-0088(200002)20:2<191::AID-JOC464>3.0.CO;2-E
  50. Saligheh, M., & Sadeghini, A. (2010). Investigation subtropical high pressure spatial variations in summer rainfalls of the southern half of Iran. Geography and Development, 8(17), 83-98. (In Persian). https://doi.org/10.22111/gdij.2010.1135
  51. Salimi, S., & Saligheh, M. (2016). The effects of atmospheric rivers on Iran climate. Physical Geography Research Quarterly, 48(2), 247-264. (In Persian). https://doi.org/10.22059/jphgr.2016.59366
  52. Seager, R., Murtugudde, R., Naik, N., Clement, A., Gordon, N., & Miller, J. (2003). Air–sea interaction and the seasonal cycle of the subtropical anticyclones. Journal of Climate, 16(12), 1948-1966. https://doi.org/10.1175/1520-0442(2003)016<1948:AIATSC>2.0.CO;2
  53. Seager, R., Osborn, T.J., Kushnir, Y., Simpson, I.R., Nakamura, J., & Liu, H. (2019). Climate variability and change of Mediterranean-type climates. Journal of Climate, 32(10), 2887-2915. https://doi.org/10.1175/JCLI-D-18-0472.1
  54. Sun, J., & Ming, J. (2019). Possible mechanism for the weakening relationship between Indian and central East Asian summer rainfall after the late 1970s: role of the mid-to-high-latitude atmospheric circulation. Meteorology and Atmospheric Physics, 131, 517-524. https://doi.org/10.1007/s00703-018-0586-5
  55. Wang, B., Xiang, B., & Lee, J.Y. (2013). Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences, 110(8), 2718-2722. https://doi.org/10.1073/pnas.1214626110
  56. Wei, W., Li, W., Deng, Y., & Yang, S. (2019). Intraseasonal variation of the summer rainfall over the Southeastern United States. Climate Dynamics, 53(1), 1171-1183. https://doi.org/10.1007/s00382-018-4345-6
  57. Wu, G., Liu, Y., & Liu, P. (2004). Formation of the summertime subtropical anticyclones. In East Asian Monsoon. (pp. 499-544). https://doi.org/10.1142/9789812701411_0014
  58. Wu, X., Xu, L., Hong, Y., Chen, J., Qiu, Y., Hu, B., & Li, M. (2019). The air pollution governed by subtropical high in a coastal city in Southeast China: Formation processes and influencing mechanisms. Science of The Total Environment, 692, 1135-1145. https://doi.org/10.1016/j.scitotenv.2019.07.341
  59. Xiang, B., Wang, B., Yu, W., & Xu, S. (2013). How can anomalous western North Pacific subtropical high intensify in late summer?. Geophysical Research Letters, 40(10), 2349-2354. https://doi.org/10.1002/grl.50431
  60. Zangeneh, S., Lashkari, H., & Moradi, M. (2015). Synoptic analysis of Saudi pressure and effect on drought the South and South West of Iran. Geography and Environmental Sustainability, 5(2), 17-31.
  61. Zhou, T.J., & Yu, R.C. (2005). Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. Journal of Geophysical Research: Atmospheres, 27,110(D8), https://doi.org/10.1029/2004JD005413
  62. Heydarizad, M., Raeisi, E., Sori, R., & Gimeno, L. (2018). The identification of Iran’s moisture sources using a Lagrangian particle dispersion model. Atmosphere, 9(10), 1-15. https://doi.org/10.3390/atmos9100408
  63. Parak, F., Roshani, A., & Alijani, B. (2015). Synoptic investigation of the role of the Sudanese low pressure system during wet and drought years in the Southern Half of Iran. Journal of Geography and Environmental Hazards, 4(3), 75-90. https://doi.org/10.22067/geo.v4i3.40062
CAPTCHA Image