دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مرتعداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران

2 گروه علوم و صنایع چوب و کاغذ، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

10.22067/jsw.2025.92519.1475

چکیده

پوشش‌های گیاهی به‌عنوان عوامل کلیدی در اکوسیستم‌ها، اثرات قابل توجهی بر ویژگی‌های خاک دارند. در همین راستا پژوهش حاضر با هدف بررسی ویژگی‌های مختلف لایه‌آلی و بخش معدنی خاک در اراضی دارای پوشش درختی با غالبیت اوری، پوشش درختچه‌ای ولیک، زرشک، آمیخته ولیک و زرشک در شهرستان رودبار استان گیلان انجام شد. بدین منظور در هر یک از رویشگاه‌های مورد مطالعه 10 نمونه لایه آلی (لاشه ریزه) و 10 نمونه خاک از عمق10-0 سانتی‌متری جهت تجزیه و تحلیل به آزمایشگاه انتقال داده شد. یک بخش از نمونه‌های خاک جهت انجام آزمایش‌های فیزیکی و شیمیایی، پس از هوا خشک شدن از الک 2 میلی‌متری عبور داده ‌شده و بخش دوم نمونه‌ها برای انجام آزمایش‌های زیستی تا زمان آزمایش در دمای 4 درجه سانتی‌گراد نگهداری شد. طبق نتایج پژوهش حاضر بیشترین مقادیر نیتروژن، فسفر، پتاسیم، کلسیم و منیزیم لایه آلی در پوشش درختی اوری و کمترین مقدار این ویژگی‌ها در پوشش درختچه‌ای زرشک مشاهده شد. همچنین بیشترین مقدار پایداری خاکدانه‌ها، خاکدانه درشت، بیشترین مقادیر pH و ویژگی‌های حاصل‌خیزی خاک در پوشش درختی اوری مشاهده شد. بیشترین و کمترین میزان معدنی شدن کربن و نیتروژن به ترتیب به پوشش درختی اوری و پوشش درختچه‌ای زرشک تعلق داشت. نتایج پژوهش حاضر نشان داد که حضور پوشش‌های درختی، اثرات مثبتی بر ویژگی‌های خاک دارد. این پوشش‌ها با بهبود ساختار فیزیکی، افزایش مواد آلی و فعالیت‌های میکروبی کیفیت خاک را به‌طور چشمگیری افزایش می‌دهند. در همین راستا پیشنهاد می‌شود برای احیاء اراضی تخریب یافته با شرایط اکولوژی مشابه از پوشش درختی (اوری) استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Tree and Shrub Cover (Vegetation) on Soil Characteristics of Rudbar in Guilan

نویسندگان [English]

  • Y. Kooch 1
  • M. Fooladi Doghazlo 1
  • K. Haghverdi 2

1 Department of Range Management, Faculty of Natural Resources, Tarbiat Modares University, Noor, I. R. Iran

2 Department of Wood and Paper Science and Technology, Ka.C., Islamic Azad University, Karaj, Iran

چکیده [English]

Introduction   
Vegetation, as a key factor in ecosystems, has significant impacts on soil properties through multiple ecological processes. Vegetative cover enhances soil structure and composition by stabilizing organic matter, reducing erosion, regulating moisture levels, promoting nutrient cycling, and supporting microbial activity. While extensive research has elucidated the effects of various vegetation types on the physical and chemical properties of soil, the biological attributes of soil under different vegetation covers, particularly tree and shrub species, remain underexplored. This study aims to comprehensively evaluate the characteristics of the organic and mineral soil layers in areas dominated by Quercus macranthera tree cover, Crataegus microphylla shrub cover, Berberis integerrima shrub cover, and a mixed Crataegus microphylla and Berberis integerrima shrub cover in Rudbar County, Guilan Province, Iran. By examining these diverse vegetation types, the study seeks to elucidate their differential impacts on soil health and ecosystem functionality, providing insights for sustainable land management.
 
Materials and Methods
To investigate the influence of vegetation cover on soil properties, a rigorous site selection process was employed. Following preliminary field assessments, study areas were chosen to ensure continuity of vegetation cover and minimal variations in topographic factors, including elevation above sea level, slope gradient, and aspect. This approach minimized confounding variables, allowing for accurate comparisons across vegetation types. In each habitat, two 100 m × 100 m plots were implemented, with a minimum separation of 500 meters to account for spatial variability. Within each one-hectare plot, five soil samples (30 cm × 30 cm surface area, 10 cm depth) were collected from the organic and mineral layers at the four corners and the center of the plot. In total, 10 litter samples and 10 soil samples were collected from each vegetation type and transported to the laboratory for detailed analysis. Laboratory assays evaluated a suite of physical, chemical, and biological parameters, including soil aggregate stability, nutrient content, enzymatic activities, and microbial community dynamics, to provide a comprehensive understanding of soil responses to vegetation cover.
 
Results and Discussion
The findings revealed marked differences in soil properties across the studied vegetation types. The Q. macranthera tree cover exhibited the highest amount of essential nutrients in the organic layer, including nitrogen, phosphorus, potassium, calcium, and magnesium, reflecting its capacity to enhance nutrient cycling. In contrast, the B. integerrima shrub cover consistently exhibited the lowest nutrient concentrations, indicating minimal contribution to soil fertility. Analysis of soil physical and chemical properties further highlighted these differences. The Q. macranthera cover demonstrated significantly greater soil aggregate stability, higher clay content, increased proportions of coarse and fine aggregates, more favorable pH levels, and elevated concentrations of total nitrogen, ammonium, nitrate, phosphorus, potassium, calcium, as well as greater fine root biomass.  Enzymatic activities, including urease, acid phosphatase, arylsulfatase, and invertase, were also significantly higher under Q. macranthera, indicating robust microbial and biochemical processes. Conversely, B. integerrima cover recorded the lowest values for these parameters, highlighting its limited impact on soil structure and function. Particulate and dissolved organic nitrogen levels were similarly highest under Q. macranthera, reinforcing its role in organic matter dynamics. Biological soil properties mirrored these trends. The Q. macranthera cover supported the highest densities of soil microfauna, including Acarina, Collembola, and nematodes, as well as abundant protozoa, fungal, and bacterial populations. Metrics of microbial activity, such as basal respiration, substrate-induced respiration, microbial biomass nitrogen, and microbial biomass phosphorus, were also maximized under this tree cover, reflecting a thriving soil microbial community. In contrast, B. integerrima cover exhibited the lowest values for these biological indicators, suggesting a less supportive environment for soil biota. Temporal analysis of carbon mineralization revealed significant variations at weeks 2, 4, 5, 8, and 12, with no notable changes at weeks 1 and 17. The highest carbon mineralization rates were observed under Q. macranthera, while B. integerrima showed the lowest. Nitrogen mineralization followed a similar pattern, with significant changes on days 7, 14, 21, 28, and 35, and the highest rates under Q. macranthera. These results collectively indicate that vegetation type, combined with topographic factors like elevation, significantly shapes the physical, chemical, and biological characteristics of soil in Rudbar County.
 
Conclusion
This study demonstrates that Q. macranthera tree cover significantly enhances soil quality compared to C. microphylla, B. integerrima, and their mixed shrub covers. The superior physical, chemical, and biological properties observed under Q. macranthera highlight its critical role in fostering soil microbial communities, improving nutrient cycling, and maintaining soil fertility. Enhanced carbon and nitrogen mineralization rates further underscore the importance of this tree species in driving biogeochemical processes essential for ecosystem health. These findings have important implications for land-use planning, forest management, and ecological restoration in Rudbar County. By prioritizing Q. macranthera in reforestation and conservation strategies, land managers can optimize soil productivity and ecosystem resilience. Future research should focus on long-term monitoring of these soil-vegetation interactions and explore additional environmental factors, such as climate and land-use history, to further refine management practices. The integration of such data will support the development of sustainable strategies that balance ecological health with agricultural and forestry objectives, ensuring the long-term vitality of Rudbar County’s ecosystems.

کلیدواژه‌ها [English]

  • Carbon and nitrogen mineralization
  • Soil fertility
  • enzymatic activity
  • Soil physical and chemical properties

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Adl, S.M., Acosta-Mercado, D., Anderson, T.R., & Lynn, D.H. (2006). Protozoa, supplementary material. Soil Sampling and Methods of Analysis, 2(1), 455-470. https://doi.org/10.1201/9781420005271.ch36
  2. Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry (Issue 631.46 M592ma). Academic Press.
  3. Allison, L.E. (1975). Organic carbon. In: Black CA. Methods of soil analysis. American Society of Agronomy, Part, 2.
  4. Anderson, T.H., & Domsch, K.H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22(2), 251-255. https://doi.org/10.1016/0038-0717(90)90094-G
  5. Babur, E., Uslu, Ö.S., Battaglia, M.L., Diatta, A., Fahad, S., Datta, R., & Danish, S. (2021). Studying soil erosion by evaluating changes in physico-chemical properties of soils under different land-use types. Journal of the Saudi Society of Agricultural Sciences, 20(3), 190-197.‏ https://doi.org/10.1016/j.jssas.2021.01.005
  6. Bayranvand, M., & Kooch, Y. (2016). The effect of broad-leaved tree species on abundance and diversity of earthworms in the flat forest ecosystem. Journal of Soil Biology, 4(1), 15-26.‏
  7. Bélanger, N., & Chaput-Richard, C. (2023). Experimental warming of typically acidic and nutrient-poor boreal soils does not affect leaf-litter decomposition of temperate deciduous tree species. Soil Systems, 7(1), 14. https://doi.org/10.3390/soilsystems7010014
  8. Bhattacharyya, S.S., & Furtak, K. (2022). Soil–Plant–Microbe interactions determine soil biological fertility by altering rhizospheric nutrient cycling and biocrust formation. Sustainability, 15(1), 625. https://doi.org/10.3390/su15010625
  9. Blake, G.R., & Hartge, K.H. (1986). Particle density. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. SSSA Book Ser. 5. ASA and SSSA, Madison, WI, 377–382. https://doi.org/10.2136/sssabookser5.1.2ed.c14
  10. Bower, C.A., Reitemeier, R.F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73, 251-261. https://doi.org/10.1097/00010694-195204000-00001
  11. Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total total. In ‘Methods of Soil Analyses. Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Madison, 595-624. https://doi.org/10.2134/ agronmonogr9.2.2ed.c31
  12. Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
  13. Chapman, H.D., & Pratt, P.F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68. https://doi.org/10.1097/00010694-196201000-00015
  14. Coonan, E.C., Kirkby, C.A., Kirkegaard, J.A., Amidy, M.R., Strong, C.L., & Richardson, A.E. (2020). Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutrient Cycling in Agroecosystems, 117(3), 273-298. https://doi.org/10.1007/s10705-020-10076-8
  15. Długosz, J., Dębska, B., & Piotrowska-Długosz, A. (2024). The effect of soil tillage systems on the soil microbial and enzymatic properties under soybean (Glycine max Merrill) cultivation—implications for sustainable soil management. Sustainability, 16(24), 11140. https://doi.org/10.3390/su162411140
  16. Dolezal, J., Dvorsky, M., Kopecky, M., Liancourt, P., Hiiesalu, I., Macek, M., & Schweingruber, F. (2016). Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports, 6(1), 24881.‏ https://doi.org/10.1038/srep24881.
  17. Edmondson, J.L., Stott, I., Davies, Z.G., Gaston, K.J., & Leake, J.R. (2016). Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Scientific Reports, 6(1), 33708. https://doi.org/10.1038/srep33708
  18. Elliott, E.T., & Cambardella, C.A. (1991). Physical separation of soil organic matter. Agriculture, Ecosystems & Environment, 34(1-4), 407-419. https://doi.org/10.1016/0167-8809(91)90124-G
  19. Eslaminejad, P., Heydari, M., Kakhki, F.V., Mirab-Balou, M., Omidipour, R., Muñoz-Rojas, M., & Lucas-Borja, M.E. (2020). Plant species and season influence soil physicochemical properties and microbial function in a semi-arid woodland ecosystem. Plant and Soil, 456, 43-59. https://doi.org/10.1007/s11104-020-04691-1.
  20. Feng, Q., Yang, H., Liu, Y., Liu, Z., Xia, S., Wu, Z., & Zhang, Y. (2024). Interdisciplinary perspectives on forest ecosystems and climate interplay: a review. Environmental Reviews, 33, 1-21. https://doi.org/10.1139/er-2024-0010
  21. Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems, 6(2), 33.‏ https://doi.org/10.3390/soilsystems6020033
  22. Gilhen-Baker, M., Roviello, V., Beresford-Kroeger, D., & Roviello, G.N. (2022). Old growth forests and large old trees as critical organisms connecting ecosystems and human health. A review. Environmental Chemistry Letters, 20(2), 1529-1538.‏ https://doi.org/10.1007/s10311-021-01372-y
  23. Harman, G., Khadka, R., Doni, F., & Uphoff, N. (2021). Benefits to plant health and productivity from enhancing plant microbial symbionts. Frontiers in Plant Science, 11, 610065. https://doi.org/10.3389/fpls.2020.610065
  24. Jordan, D., Ponder, F., Jr., & Hubbard, V.C. (2003). Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Applied Soil Ecology, 23(1), 33–41. https://doi.org/10.1016/S0929-1393(03)00003-9
  25. Kemper, W.D., & Rosenau, R.C. (1986). Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 425–442. https://doi.org/10.2136/sssabookser5.1.2ed.c17
  26. Kim, J.S. (2007). Litter decomposition and nitrogen release in three quercus species at temperate broad‐leaved forest. Forest Science and Technology, 3(2), 123-131.‏ https://doi.org/10.1080/21580103.2007.9656328
  27. Kooch, Y., & Noghre, N. (2020). Nutrient cycling and soil-related processes under different land covers of semi-arid rangeland ecosystems in northern Iran. Catena, 193, 104621. https://doi.org/10.1016/j.catena.2020.104621
  28. Kooch, Y., Heidari, F., Haghverdi, K., Gómez-Brandón, M., & Kartalaei, Z.M. (2024). The type of land cover and management affect differently soil functional indicators in a semi-arid ecosystem. Applied Soil Ecology, 202, 105553. https://doi.org/10.1016/j.apsoil.2024.105553
  29. Kooch, Y., Samadzadeh, B., & Hosseini, S.M. (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150(3), 223-229. https://doi.org/10.1016/j.catena.2016.11.023
  30. Li, Z., Liang, D., Peng, Q., Cui, Z., Huang, J., & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, 69-79. https://doi.org/10.1016/j.geoderma.2017.02.019
  31. Liu, D., Huang, Y., An, S., Sun, H., Bhople, P., & Chen, Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena, 162, 345-353. https://doi.org/ 10.1016/j.catena.2017.10.028
  32. Mendoza, O., De Neve, S., Deroo, H., Li, H., Françoys, A., & Sleutel, S. (2025). Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter. Soil, 11(1), 105-119.‏ https://doi.org/10.5194/soil-11-105-2025
  33. Mohamed, H. I., Sofy, M.R., Almoneafy, A.A., Abdelhamid, M.T., Basit, A., Sofy, A.R., & Abou-El-Enain, M.M. (2021). Role of microorganisms in managing soil fertility and plant nutrition in sustainable agriculture. Plant Growth-promoting Microbes for Sustainable Biotic and Abiotic Stress Management, 93-114.‏ https://doi.org/10.1007/978-3-030-66587-6_4
  34. Mohammad, A.G., & Adam, M.A. (2010). The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena, 81(2), 97-103.‏ https://doi.org/10.1016/j.catena.2010.01.008
  35. Moscatelli, M.C., Marabottini, R., Massaccesi, L., & Marinari, S. (2022). Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Regional, 29, e00500. https://doi.org/10.1016/j.geodrs.2022.e00500
  36. Neatrour, M.A., Jones, R.H., & Golladay, S.W. (2005). Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian Journal of Forest Research, 35(12), 2934–2941. https://doi.org/10.1139/x05-217
  37. Nelson, D.W.A, & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  38. Nilsson, M.-C., Wardle, D.A., & Dahlberg, A. (1999). Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos, 16–26. https://doi.org/10.2307/3546566
  39. Osman, K.T., & Osman, K.T. (2013). Physical properties of forest soils. Forest Soils: Properties and Management, 19-44. https://doi.org/10.1007/978-3-319-02541-4_2
  40. Poirier, V., Roumet, C., & Munson, A.D. (2018). The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry, 120, 246-259. https://doi.org/10.1016/j.soilbio.2018.02.016
  41. Pourbabaei, H., Salehi, A., Ebrahimi, S.S., & Khodaparasrt, F. (2020). Variations of soil physicochemical properties and vegetation cover under different altitudinal gradient, western Hyrcanean forest, north of Iran.‏https://doi.org/10.17221/136/2019-JFS
  42. Qu, L., Huang, Y., Ma, K., Zhang, Y., & Biere, A. (2016). Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China. Soil Biology and Biochemistry, 94, 1-9. https://doi.org/10.1016/ j.soilbio.2015.11.004
  43. Robertson, G.P., Coleman, D.C., Sollins, P., & Bledsoe, C.S. (1999). Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand. https://doi.org/10.1093/oso/9780195120837. 001.0001
  44. Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419
  45. Seddighi Chafjiri, A.N., Hasan Zad Navroudi, I., Taheri Abkenar, K., & Pourbabaei, H. (2021). Effect of protection on quantity and quality characteristics of Persian oak (Quercus macranthera A. Mey) in Roudbar forests of Guilan province. Journal of Environmental Science and Technology, 22(11), 263-275.
  46. Sharma, M., Setia, R., Rishi, M., Kumar, V., Singh, R., & Pateriya, B. (2025). Short-term carbon mineralization from soils under different land uses in northwest India. Soil Advances, 3, 100038.‏ https://doi.org/ 10.1016/j.soilad.2025.100038
  47. Singh, J.S., Singh, D.P., & Kashyap, A.K. (2009). A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India. Plant Soil Environ, 55(6), 223-230. https://doi.org/10.17221/1021-PSE
  48. Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S.J., Gregorich, E.G., Paul, E.A., & Paustian, K. (2002). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66(6), 1981-1987. https://doi.org/10.2136/sssaj2002.1981
  49. Tavakoli, M., Kooch, Y., & Akbarinia, M. (2018). Frequency and diversity of worms in topsoil of degraded and reclaimed forest habitats of the Caspian region. Iranian Journal of Forest, 10(3), 293–306. (In Persian)
  50. Timmis, K., & Ramos, J.L. (2021). The soil crisis: the need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microbial Biotechnology, 14(3), 769-797. https://doi.org/10.1111/1751-7915.13771
  51. Toca, L., Morrison, K., Artz, R., Gimona, A., & Quaife, T. (2022). High resolution C-band SAR backscatter response to peatland water table depth and soil moisture: a laboratory experiment. International Journal of Remote Sensing, 43(14), 5231-5251. https://doi.org/10.1080/01431161.2022.2131478
  52. Tufa, M., Melese, A., & Tena, W. (2019). Effects of land use types on selected soil physical and chemical properties: The case of Kuyu District, Ethiopia. Eurasian Journal of Soil Science, 8(2), 94-109.‏ https://doi.org/10.18393/ejss.510744
  53. Ulusu, F., & Darıcı, C. (2023). The influence of tannins purified from Eastern Mediterranean Region plants (Pinus brutia and Quercus coccifera L.) on carbon mineralization: Antimicrobial and antimutagenic evaluation. Anatolian Journal of Botany, 7(1), 60-69. https://doi.org/10.30616/ajb.1259084
  54. Wang, Q., & Wang, S. (2006). Microbial biomass in subtropical forest soils: effect of conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata Journal of Forestry Research, 17(3), 197–200. https://doi.org/10.1007/s11676-006-0046-9
  55. Wang, W., Jia, T., Qi, T., Li, S., Degen, A.A., Han, J., & Shang, Z. (2022). Root exudates enhanced rhizobacteria complexity and microbial carbon metabolism of toxic plants. Iscience, 25(10).‏ https://doi.org/10.1016/j.isci. 2022.105243
  56. Wollum, A.G. (1982). Cultural methods for soil microorganisms. Methods of Soil Analysis: part 2 Chemical and Microbiological Properties, 9, 781-802. https://doi.org/10.2134/agronmonogr9.2.2ed.c37
  57. Xiang, T., Qiang, F., Liu, G., Liu, C., Liu, Y., Ai, N., & Ma, H. (2023). Soil quality evaluation of typical vegetation and their response to precipitation in Loess Hilly and Gully Areas. Forests, 14(9), 1909.‏ https://doi.org/ 10.3390/f14091909.
  58. Yengwe, J., Gebremikael, M.T., Buchan, D., Lungu, O., & De Neve, S. (2018). Effects of Faidherbia albida canopy and leaf litter on soil microbial communities and nitrogen mineralization in selected Zambian soils. Agroforestry Systems, 92, 349-363. https://doi.org/10.1007/s10457-016-0063-4
  59. Zancan, S., Trevisan, R., & Paoletti, M.G. (2006). Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agric Ecosyst Environ, 112(1), 1–12. https://doi.org/10.1016/j.agee.2005.06.018
  60. Zhao, S., & Riaz, M. (2024). Plant–soil interactions and nutrient cycling dynamics in tropical rainforests. In Environment, Climate, Plant and Vegetation Growth, 229-264. https://doi.org/10.1007/978-3-031-69417-2_8
  61. Zhou, P., Luukkanen, O., Tokola, T., & Nieminen, J. (2008). Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75(3), 319-325.‏ https://doi.org/10.1016/j.catena.2008.07.010

 

CAPTCHA Image