دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسنده

گروه آموزش جغرافیا، دانشگاه فرهنگیان، صندوق پستی14665-889 ، تهران، ایران

10.22067/jsw.2025.92455.1473

چکیده

در این مطالعه، آستانه‌های زایشی و رویشی گیاه عناب در طول فصول مختلف در شهرستان‌های استان خراسان جنوبی بررسی شد و تغییرات روند دما و بارش تحلیل و پهنه‌بندی گردید. داده‌های مورد استفاده شامل میانگین ماهانه دما و بارش، ساعت آفتابی و روزهای داغ از 7 ایستگاه همدید با دوره آماری 25 ساله (2000 تا 2024) بود که از سازمان هواشناسی کشور استخراج شد. برای تحلیل روند، از آزمون‌های من-کندال تصحیح شده، تخمین‌گر شیب سن و رگرسیون خطی استفاده شد. نتایج نشان داد که به‌جز ایستگاه‌های نهبندان (در ماه‌های ژوئن، جولای و آگوست) و بشرویه (در جولای)، سایر ایستگاه‌ها در هیچ زمانی از نظر دمای حداکثر دچار توقف رویشی نشدند. با این حال، تمام ایستگاه‌ها از ماه مارس تا اکتبر از نظر رشد زایشی متوقف شدند. بیشترین دمای ثبت‌شده در جنوب شرقی استان، به‌ویژه در ایستگاه نهبندان، مشاهده شد، درحالی‌که مناطق مرکزی، شمال و شمال شرق از نظر دمایی مستعدتر بودند. بررسی بارش سالانه نشان داد که ایستگاه زیرکوه با 8/182 میلی‌متر بارش سالانه، بیشترین میزان را دارد، که بیانگر نیاز عناب به آبیاری مکمل 2/267 میلی­متری است. تحلیل مقادیر P-value برای میانگین دما نشان‌دهنده تغییرات فضایی معنادار است، به‌طوری‌که ایستگاه‌های بیرجند، بشرویه و قاین (05/0 p ≤) در شمال و مرکز استان، فاقد روند معناداری آماری بوده است، درحالی‌که ایستگاه‌های جنوبی‌تر مانند نهبندان (02/0 =p) دارای روند قوی معناداری آماری در سطح 95% اطمینان می­باشد. همچنین تحلیل مقادیر P-value برای میانگین بارش نشان‌دهنده این است که ایستگاه‌های بیرجند، بشرویه، زیرکوه و قاین (05/0 p ≤) در شمال و مرکز استان، روند قوی معناداری آماری بوده است، درحالی‌که ایستگاه‌های جنوبی‌تر مانند نهبندان (28/0 =p) فاقد روند معناداری آماری در سطح 95% اطمینان می­باشد. همچنین از نظر نمره Z من-کندال تصحیح‌شده بیشترین میزان افزایش دما در ایستگاه نهبندان با مقدار 43/۳ و کمترین آن در ایستگاه زیرکوه با مقدار 94/0 مشاهده شده است. در مورد روند بارش، نتایج آزمون من–کندال تصحیح‌شده حاکی از کاهش بارش در تمامی ایستگاه‌ها طی دوره مورد بررسی است. بیشترین کاهش بارش در ایستگاه نهبندان با مقدار 32/۳- و کمترین کاهش در ایستگاه بیرجند با مقدار 63/0- ثبت شده است. در کل کاهش بارش، افزایش ساعات آفتابی و روزهای داغ، نشان‌دهنده تشدید تابش خورشید، تبخیر-تعرق و خشکی محیط است. در کنار کاهش بارش، روند افزایشی ساعات آفتابی و روزهای داغ حاکی از افزایش میزان تابش خورشید و افزایش میزان تبخیر-تعرق و خشکی بیشتر محیط است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analysis of Temperature and Precipitation Trends and Their Impact on the Reproductive and Vegetative Thresholds and Cultivation Range of Jujube (Ziziphus jujuba Mill.)

نویسنده [English]

  • M. Asadi

Department of Geography Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

چکیده [English]

Introduction
Human activities and the substantial increase in greenhouse gas concentrations-particularly carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) have exacerbated global warming and triggered significant alterations in climatic patterns. Consequently, climate change has emerged as a critical challenge for natural resource management and agricultural systems in recent decades. These changes, especially temperature and precipitation fluctuations, directly impact plant phenological and vegetative cycles and may even shift the suitable geographical ranges for cultivating certain plant species. Among these species is Ziziphus jujuba Mill. (Family: Rhamnaceae), a medicinally valuable plant that exhibits relative adaptability to arid and semi-arid climates, such as those in Iran. However, it remains vulnerable to climate change impacts. Historically cultivated in South Khorasan Province, this region now accounts for over 72% of Iran’s jujube production. Investigating climatic trends and their effects on the reproductive and vegetative thresholds of Ziziphus jujuba is both scientifically and practically significant. Such analyses enhance our understanding of regional climate change dynamics and facilitate predictive assessments of its agricultural consequences. Therefore, the objective of the present study was to identify the reproductive and vegetative thresholds of jujube throughout the year in the counties of South Khorasan Province and to spatially analyze these thresholds in terms of temperature and precipitation, both under baseline conditions and future scenarios influenced by trends in temperature and precipitation changes.
 
Material and Methods
In this study, the modified Mann-Kendall test, Sen's slope estimator, and linear regression analysis were employed to analyze trends in data related to determining the cultivation range of the jujube plant. The study data included monthly temperature and precipitation averages from seven synoptic stations within the study area, covering a statistical period of 25 years from 2000 to 2024. These data were extracted from the National Meteorological Organization and served as the foundation for the study. Station data were converted into z-scores using the modified Mann-Kendall test in Minitab software. Additionally, linear trends of variables such as minimum temperature, maximum temperature, mean temperature, precipitation, sunshine hours, and hot days, along with their corresponding slopes, were examined.
 
Results and Discussion
Jujube plants, like other plant species, require specific temperature ranges for optimal growth during different vegetative and reproductive stages. This study examined the thermal thresholds that impact the growth of jujube trees. It was found that 25°C was the threshold at which reproductive growth stops, while 40°C was the threshold for the cessation of vegetative growth. Additionally, the biological zero for jujube growth had been established at 11°C, and this plant can tolerate low temperatures down to -33°C. Some studies have even reported the plant's ability to withstand temperatures as low as -40°C. In this research, each of the seven studied stations in the region was individually analyzed in terms of maximum temperatures and critical points leading to the cessation of vegetative and reproductive growth.
 
 
Conclusion
The findings revealed that the Zirkuh station, with an average annual precipitation of 182.8 mm, received the highest rainfall among the studied stations. Nevertheless, even at this station, jujube plants required supplementary irrigation of 267.2 mm. Fortunately, the region's climatic conditions were characterized by rare and minimal summer rainfall, a phenomenon that could otherwise cause fruit cracking, making this area particularly suitable for jujube cultivation. Analysis of climatic data from 2000 to 2024 demonstrated significant spatial heterogeneity in temperature trends. Modified Mann-Kendall test results indicated a warming trend across all stations, with the most pronounced increase observed in Nehbandan station (3.43°C) and the least in Zirkuh station (0.94°C). These spatial variations can be attributed to altitudinal differences, geographical positioning, and localized microclimatic conditions. Sen's slope estimator corroborated these findings, showing the steepest positive slope in Ferdows station (0.24) and the gentlest in Khosf station (0.03). Linear regression analysis revealed a decadal temperature increase ranging from 0.07°C in Birjand and Zirkuh stations to 2.48°C in Nehbandan station. Statistical analysis of p-values demonstrated significant spatial patterns in temperature changes. While northern and central stations (e.g., Birjand, Boshruyeh, and Ghaen; p ≤ 0.05) show no significant trend, southern stations, particularly Nehbandan (p ≤ 0.02), exhibited statistically significant warming. Regarding precipitation, all stations showed decreasing trends, with a maximum reduction in Nehbandan (-3.32 mm) and a minimum in Birjand (-0.63 mm). Sen's slope analysis indicated the steepest decline in Ferdows (-0.34) and the mildest in Zirkuh (-0.13). Regression analysis estimates an annual precipitation decreased ranging from 0.04 mm/decade in Zirkuh to 1.80 mm/decade in Ghaen. Statistically, northern and central stations (p ≤ 0.05) show significant drying trends, while southern stations like Nehbandan (p = 0.28) exhibited no statistically significant trend.

کلیدواژه‌ها [English]

  • Jujube
  • Precipitation
  • South Khorasan
  • Temperature
  • Trend analysis

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abedini, E., Mousavi Baygi, M., Khashei Siuki, A., & Selahvarzi, Y. (2020). Investigating the trend of extreme climatic events in South Khorasan province. Journal of Agricultural Meteorology7(2), 55-66. (In Persian with English abstract)
  2. Alston, J.M., & Pardey, P.G. (2014). Agriculture in the global economy. Journal of Economic Perspectives, 28(1), 121-146. https://doi.org/10.1257/jep.28.1.121
  3. Ashrafi, A., Mikaniki, J., & Dehghani, M. (2013). Agro-ecological zoning and evaluation of ecological potencies of south Khorasan for Jujube plantation. Geographical Planning of Space, 3(7), 67-86. (In Persian with English abstract)
  4. Bambang, I., Saravanan, S., Reddy, N.M., & Abijith, D. (2023). An investigation of the changing patterns of rainfall in the Indravathi subbasin utilizing the Mann-Kendall and Sen’s slope methods. In IOP Conference Series: Earth and Environmental Science (Vol. 1173, No. 1, p. 012036). IOP Publishing. https://doi.org/10.1088/1755-1315/1173/1/012036
  5. Barani, N., & Karami, A. (2019). Annual trend analysis of climate parameters of temperature and precipitation in decuple agroecology regions of Iran. Environmental Sciences, 17(4), 75-90. (In Persian with English abstract). https://doi.org/10.29252/envs.17.4.75
  6. Bouteska, A., Sharif, T., Bhuiyan, F., & Abedin, M.Z. (2024). Impacts of the changing climate on agricultural productivity and food security: Evidence from Ethiopia. Journal of Cleaner Production, 449, https://doi.org/10.1016/j.jclepro.2024.141793
  7. Chang, C.C. (2003). The potential impact of climate change on Taiwan's agriculture. Agricultural Economics, 27(1), 51-64. https://doi.org/10.1111/j.1574-0862.2002.tb00104.x
  8. Cheng, G., Bai, Y., Zhao, Y., Tao, J., Liu, Y., Tu, G., & Xu, X. (2000). Flavonoids from Ziziphus jujuba Mill var. spinosa. Tetrahedron, 56(45), 8915-8920. https://doi.org/10.1016/S0040-4020(00)00842-5
  9. Ghasemnejad, A., Khoshbakht, K., Mahmoudi, H., & Sayahnia, R. (2024). Assessing the trends and drivers of agricultural land use change in the Ramsar County, northern Iran. Environmental and Sustainability Indicators, 22, https://doi.org/10.1016/j.indic.2024.100410
  10. Gholipour, J., Mousavi Bayegi, M., Babaeian, I., & Jabbari Nooghabi, M. (2021). Investigating the trend of extreme precipitation events South Khorasan province due to climate change. Journal of Climate Research, 1400(46), 29-42. (In Persian with English abstract)
  11. Ghous, K., & Haderbadi, Gh.R. (2013). Production d'épine-vinette, de safran et de jujube basée sur les connaissances autochtones et un aperçu de la culture du jujubier dans d'autres pays, Fakrbakr Publications, Khorasan du Sud, 180 pages. (In Persian with English abstract), https://doi.org/10.3917/afd.madar.2013. 01.0001
  12. Hamed,H., & Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X
  13. Hao, Q., Yang, L., Fan, D., Zeng, B., & Jin, J. (2021). The transcriptomic response to heat stress of a jujube (Ziziphus jujuba) cultivar is featured with changed expression of long noncoding RNAs. PLoS One, 16(5), e0249663. https://doi.org/10.1371/journal.pone.0249663
  14. Hoseini, S.S., Nazari, M., & Araghinejad, S. (2013). Investigating the impacts of climate on agricultural sector with emphasis on the role of adaptation strategies in this sector. Iranian Journal of Agricultural Economics and Development Research, 44(1), 1-16. (In Persian with English abstract). https://doi.org/10. 22059/ijaedr.2013.36064
  15. Hunter, M.C., Smith, R.G., Schipanski, M.E., Atwood, L.W., & Mortensen, D.A. (2017). Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience, 67(4), 386-391. https://doi.org/10.1093/biosci/ bix010
  16. Kendall, M. (1975). Rank Correlation Methods. Griffin, London, 202 pp.
  17. Khosravei, M., & Akbarei, M. (2009). A study characteristic of Khorasan- South province drought climatology. Geography and Development, 7(14), 51-68. (In Persian with English abstract). https://doi.org/ 10.22111/gdij.2009.1216
  18. Mann, H.B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245-259. https://doi.org/10.2307/ 1907187
  19. Maroofi, A., Azizpour, F., Omidi Shahabadi, O., Hasanpour, S., Enayati, M., & Najafizadeh, Z. (2024). Ecological zoning and determination of cropping and orchard spatial pattern in the region 3 of Iran. Village and Space Sustainable Development, 5(1), 1-25. (In Persian). https://doi.org/10.22077/vssd.2023.5982.1162
  20. Mirzadeh, N., Faizizadeh, B., Amiri, H., & Dehghani, V. (2023). Application of GIS and multi-criteria decision making method for investigating the feasibility of Pistachio cultivation (Case study: East Azerbaijan province). Management of Natural Ecosystems2(4), 38-51. (In Persian with English abstract). https://doi.org/ 10.22034/emj.2024.714432
  21. Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13), 5488. https://doi.org/10.3390/su12135488
  22. Rad, M., Asareh, M., Vazifeshenas, M., Kavand, A., & Soltani Gerdeframarzi, M. (2020). Evaluation of different levels of irrigation on evapotranspiration (ET), crop coefficient (Kc) and yield of jujube (Ziziphus jujuba) under lysimetery conditions. Water and Soil34(4), 847-860. (In Persian with English abstract). https://doi.org/10. 22067/jsw.v34i4.86329
  23. Rao, A.R., Hamed, K.H., & Chen, H.-L. (2003). Nonstationarities in hydrologic and environmental time series. Ringgold Inc., Portland, Oregon, 362 pp. https://doi.org/10.1007/978-94-010-0117-5
  24. Sabzghabaee, A.M., Khayam, I., Kelishadi, R., Ghannadi, A., Soltani, R., Badri, S., & Shirani, S. (2013). Effect of Zizyphus jujuba fruits on dyslipidemia in obese adolescents: a triple-masked randomized controlled clinical trial. Medical Archives, 67(3), 156. https://doi.org/10.5455/medarh.2013.67.156-160
  25. Saleem, A., Anwar, S., Nawaz, T., Fahad, S., Saud, S., Ur Rahman, T., & Nawaz, T. (2024). Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals. Journal of Umm Al-Qura University for Applied Sciences, 1–17. https://doi.org/10.1007/s43994-024-00177-3
  26. Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
  27. Serrano, A., Mateos, V.L., & Garcia, J.A. (1999). Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24(1-2), 85-90. https://doi.org/10.1016/S1464-1909(98)00016-1
  28. Shen, X., Tang, Y., Yang, R., Yu, L., Fang, T., & Duan, J.A. (2009). The protective effect of Zizyphus jujube fruit on carbon tetrachloride-induced hepatic injury in mice by anti-oxidative activities. Journal of Ethnopharmacology, 122(3), 555-560. https://doi.org/10.1016/j.jep.2009.01.027
  29. Song, X.I.A.O.Y.U., & Bai, P.E.N.G. (2015). Research experiment on infiltration and runoff in Jujube land of northern Shaanxi Province. Proceedings of the International Association of Hydrological Sciences, 368, 174-179. https://doi.org/10.5194/piahs-368-174-2015
  30. Tabari, H., & Marofi, S. (2011). Changes of pan evaporation in the west of Iran. Water Resources Management25, 97-111. https://doi.org/10.1007/s11269-010-9689-6
  31. Wang, Y., Wang, L., Tuerxun, N., Luo, L., Han, C., & Zheng, J. (2022). Extraction of jujube planting areas in sentinel-2 image based on NDVI threshold—A case study of Ruoqiang County. In 2022 29th International Conference on Geoinformatics(pp. 1-6). IEEE. https://doi.org/10.1109/Geoinformatics57846.2022.9963828
  32. Waqas, M., Naseem, A., Humphries, U.W., Hlaing, P.T., Shoaib, M., & Hashim, S. (2024). A comprehensive review of the impacts of climate change on agriculture in Thailand. Farming System, 100114. https://doi.org/10.1016/j.farsys.2024.100114
  33. Xue, Y., Song, D., Chen, J., Li, Z., He, X., Wang, H., & Sobolev, A. (2023). Integrated rockburst hazard estimation methodology based on spatially smoothed seismicity model and Mann-Kendall trend test. International Journal of Rock Mechanics and Mining Sciences, 163, https://doi.org/10.1016/j.ijrmms.2023.105329
  34. Yang, L., Jin, J., Fan, D.Y., Hao, Q., & Niu, J.X. (2021). Transcriptome analysis of a jujube (Ziziphus Jujuba) cultivar response to heat stress. Research Square. https://doi.org/10.21203/rs.3.rs-147915/v1
  35. Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., & Lelieveld, J. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of geophysics, 60(3), e2021RG000762. https://doi.org/10.1029/2021RG000762

 

CAPTCHA Image