Y. Ataie; M. R. Nikpour; A. Kanooni; Y. Hoseini
Abstract
Introduction: Suspended load estimation is utilized to study and investigate many problems of water engineering sciences such as dam reservoir design, transportation of sediments and pollution in the rivers, creation of stable channels, estimation of erosion and sedimentation around bridge piers, and ...
Read More
Introduction: Suspended load estimation is utilized to study and investigate many problems of water engineering sciences such as dam reservoir design, transportation of sediments and pollution in the rivers, creation of stable channels, estimation of erosion and sedimentation around bridge piers, and watershed management. The purpose of this study was to estimate the suspended load in the Dareh-Roud watershed in Ardabil province using the rivers discharge values and the physiographic characteristics of the sub-basins. Moreover, annual suspended load and sediment specific discharge were calculated for the whole of the watershed. Materials and Methods: In this study, the Dareh-Roud watershed in Ardebil province was considered as the study area. The flow discharge and suspended load data were collected from 16 hydrometric stations with a statistical period of 15 years from 2001-2015. The physiographic characteristics of sub-basins, including area (A), slope (S), shape factor (Sf), and curve number (CN), were achieved using ArcGIS and WMS. Five different input combinations were defined based on the effect of flow discharge variables and physiographic properties on the suspended load. Also, considering the area and slope parameters, the sub-basins were divided into two groups (i.e., the first and second groups). The performance of data-intelligent models, including Artificial Neural Networks (ANN), Adaptive Neural-Fuzzy Interference System (ANFIS), and Gene Expression Programming (GEP) models were investigated in the predict of the suspended load in the study area. Several statistical indicators, including determination coefficient (R2), root mean square error (RMSE), and Nash- Sutcliffe efficiency (NS), were utilized to evaluate the model’s efficiency. Results and Discussion: According to the results, estimation of suspended load without using the physiographic characteristics resulted in a high error, and in contrast, the suspended load estimation was most accurate by using a combined scenario involving all physiographic aspects and flow discharge. The scatterplots indicated that in the first group, the points were concentrated around the 1:1 axis for the values of less than 20 (ton/day). However, for the greater amounts, the scattering of issues around the one-to-one line was not appropriate, which means that the models were in the condition of underestimation. Similar conditions were observed for the second group, the excellent dispersion was seen for the values of less than 1000 (ton/day), and in general, the models had underestimation conditions. However, in both groups, the dispersion of the GEP model was somewhat better than the other models. Based on the values of R2 and NS, ANN and ANFIS models had the acceptable and satisfactory accuracy for the first group. The GEP model was more reliable and efficient in estimating the suspended load of the first group. On the other hand, the efficiency of ANN and ANFIS was not acceptable for the second group. Comparison of the results of different models using the best input combination indicated that the GEP model with the highest determination coefficient (R2 = 0.68), the lowest root mean square error (RMSE = 7.69 ton/day). The NS equal to 0.55 in the validation step has shown better performance than the other models in estimating the suspended load for the first group. Similarly, for the second group, the GEP model with the highest determination coefficient (R2 = 0.72), the lowest root means square error (RMSE = 975.26 ton/day). The NS equal to 0.43 in the validation step has shown better performance than other models in estimating the suspended load. Conclusion: In the present study, the efficiency of different intelligent models was investigated in the suspended load estimation of Dareh-roud watershed. In this regard, an extended period (i.e., during 15 years) of measured data, including flow discharge and sediment at the hydrometric stations located on the mentioned watershed, were used. In order to simulate the suspended load, five different input combinations were considered. For all models, the accuracy of suspended load estimation was improved by combining the physiographic characteristics and discharge values. Due to the higher accuracy of the GEP model, regional sediment models were achieved for the first and second groups, separately. Also, annual suspended load and sediment specific discharge were calculated for all sub-basins. According to the results, most of the suspended load of the Dareh-Roud watershed is produced and transported in its old rivers (i.e., Dareh-Roud and Qarah-Su). Based on the results of this research, in the Dareh-Roud watershed, 6.33 million tons of suspended sediments were transported during 2001-2015.
Javad ramezani moghadam; yaser hosseini; Mohammad Reza Nikpour; atieh abdoli
Abstract
Introduction: The largest share of water consumption in Iran is related to the agricultural sector. Therefore, in order to save water resources, priority is given to reducing irrigation water consumption. On the other hand, reducing of water quality and salinization are the main problems which are commonly ...
Read More
Introduction: The largest share of water consumption in Iran is related to the agricultural sector. Therefore, in order to save water resources, priority is given to reducing irrigation water consumption. On the other hand, reducing of water quality and salinization are the main problems which are commonly found in the areas with limited water resources. One of the most important effects of salinity is the reduction of yield and its inhibitory effects on plant growth and metabolism. Also, increasing salinity can reduce potassium, calcium and magnesium ions. One of the significant points regarding the effects of salinity stress is a significant decrease in the hydraulic conductivity of the roots, which leads to a decrease in the water use efficiency index. According to the food and agriculture organization (FAO), more than 40 percent of Iran's irrigated lands are affected by salinity stress, which is generally found in dry and semi-arid areas. Therefore, studying the combined effect of stress caused by salinity and water stress can be used to provide management solutions for irrigation and crop production.
Materials and Methods: This study was conducted in greenhouse laboratory at University of Mohaghegh Ardabili, Ardabil, Iran during August to November 2016. In this research, the effects of saline water on cherry tomato yield under water stress conditions were investigated. The applied treatments included irrigation with saline water (in two levels: S1=4ds/m and S2=7ds/m) and water stress (in three levels, irrigation at 40, 50 and 65% field capacity, respectively, I1, I2,I3). The experimental design used in this research was a completely randomized block design with four replications. On the other hand, in order to compare the plant yield under water stress and salinity conditions with non-stress conditions, control treatment with salinity characteristics less than 1ds/m and irrigation without water stress were used in three replications. In this experiment, cherry tomatoes were cultivated in the pots with diameter and height of 26 and 27 centimeters, respectively. The moisture meter (Model: PMS-714) was also used to measure soil moisture and determine the irrigation time. The most important parameters included cherry tomato yield, total evapotranspiration and water use efficiency index. It should be mentioned that analyses of the results were done by MSTATC software (Version: 2.10).
Results and Discussion: The results of this study showed that the interaction between two factors of water and salinity stress on the parameters was not significant, but the effects of salinity stress on yield, total evapotranspiration and water use efficiency (in two levels: 2% and 5%) are significant. Also, the greatest effect of salinity stress on cherry tomato yield was observed, so that by increasing the amount of irrigation water salinity from 4 to 7 ds/m, the yield was decreased by 27%. Also, the performance in salinity treatments of S1 and S2 decreased by 27.2% and 46.7%, respectively, compared to the controled treatment. Probably the reason for the yield reduction caused by decreasing in plant evapotranspiration and plant growth and metabolism. In addition, water use efficiency index in treatments of S1 and S2 decreased by 3.4% and 22.3%, respectively, compared to the controlled treatment. As it can be seen, the differences in water use efficiency between the control and S1 treatments were not significant. In this study, the average values of Ky (plant response coefficient to salinity and water stresses) were achieved 1.39, which was higher than the value that was reported by FAO for tomato plant under water stress conditions (equal to 1.05). This can be due to the significant effect of saline irrigation water on the yield of the tomato plants. Finally, based on the results of this research, it can be said that although salinity decreased yield significantly at 1% confidence level, in the coming years, with severe water resource constraints and increased costs for its preparation, this yield loss can be economical and feasible.
Conclusions: In this research, the effect of saline water on cherry tomato yield under water stress conditions was investigated. According to the results of this study, with increasing salinity of irrigation water from 4 to 7 ds /m, total evapotranspiration decreased by 10%. On the other hand, due to salinity stress, tomato yield was decreased to 27% in the most salinity levels of irrigation water compared to control treatment; one of the main reasons of which could be the reduction of total evapotranspiration in the growing season. In the end, the important point to note is that although, based on the results of this study, utilization of irrigation saline water decreased the yield, total evapotranspiration and water use efficiency by 27%, 8.9% and 19.2%, respectively compared to the control treatment, but in the near future, by increasing the water production costs and the quantitative reduction of water resources, even use of saline water is economically feasible and justifiable.