Irrigation
A. Kazemi Choolanak; F. Modaresi; A. Mosaedi
Abstract
IntroductionPredicting river flow is one of the most crucial aspects in water resources management. Improving forecasting methods can lead to a reduction in damages caused by hydrological phenomena. Studies indicate that artificial neural network models provide better predictions for river flow ...
Read More
IntroductionPredicting river flow is one of the most crucial aspects in water resources management. Improving forecasting methods can lead to a reduction in damages caused by hydrological phenomena. Studies indicate that artificial neural network models provide better predictions for river flow compared to physical and conceptual models. However, since these models may not offer reliable performance in estimating unstable data, using preprocessing techniques is necessary to enhance the accuracy and performance of artificial neural networks in estimating hydrological time series with nonlinear relationships. One of these methods is wavelet transformation, which utilizes signal processing techniques. Materials and MethodsIn this study, to evaluate the efficiency of discrete and continuous wavelet types in the Wavelet-Artificial Neural Network (WANN) hybrid model for monthly flow prediction, a case study was conducted on the Kardeh Dam watershed in the northeast of Iran, serving as a water source for part of Mashhad city and irrigation downstream agricultural lands. Monthly streamflow estimates for the upstream sub-basin of the Kardeh Dam were obtained from the meteorological and hydrometric stations' monthly statistics over a 30-year period (1991-2020). The WANN model is a hybrid time series model where the output of the wavelet transform serves as a data preprocessing method entering an artificial neural network as the predictive model. The combination of wavelet analysis and artificial neural network implies using wavelet capabilities for feature extraction, followed by the neural network to learn patterns and predict data, potentially enhancing the models' performance by leveraging both methods. The 4-fold cross-validation method was employed for the artificial neural network model validation, where the model underwent validation and accuracy assessment four times, each time using 75% of the data for training and the remaining 25% for model validation. The final results were presented by averaging the validation and accuracy results obtained from each of the four model runs. To evaluate and compare the performance of the models used in this study, three evaluation indices, Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE), and Pearson correlation coefficient (R), were employed. Results and DiscussionThe analysis of meteorological and hydrometric data in this study revealed that monthly streamflow in two time steps, T-1 and T-2, were the most effective predictive variables. Each of the two runoff variables of the previous month (Qt-1) and the previous two months (Qt-2) were analyzed by each of the Haar and Fejer-Korovkin2 discrete wavelet transforms and the two continuous Symlet3 and Daubechies2 wavelets at three levels. The results of each level of decomposition was given as input to the ANN model. The presented results at each decomposition level indicated that hybrid models could accurately predict lower flows compared to the single ANN model, and the estimation of maximum values also significantly improved in the hybrid models. Among the wavelets used, Haar wavelets exhibited the weakest performance, and the less commonly employed Kf2 wavelet showed a moderate performance. Since the Haar and Fk2 wavelets, with their discrete structure, did not perform well in decomposing continuous monthly streamflow data, continuous wavelet models outperformed discrete wavelet models. The hybrid models, combining wavelet analysis and artificial neural networks, demonstrated up to an 11% improvement over the performance of the single neural network model. ConclusionStreamflow is a crucial element in the hydrological cycle, and predicting it is vital for purposes such as flood prediction and providing water for consumption. The objective of this research was to evaluate the performance of different types of discrete and continuous wavelet models at various decomposition levels in enhancing the efficiency of artificial neural network (ANN) models for streamflow prediction. Since climate and watershed characteristics can influence the nature of data fluctuations and, consequently, the results of the wavelet model decomposition, choosing an appropriate wavelet model is essential for obtaining the best results. Considering the existing variations in the results of different studies regarding the selection of the best wavelet type, it is suggested to use both continuous and discrete wavelet types in modeling to achieve the best predictions and select the optimal results. Given that a lower number of input variables in neural network models lead to higher accuracy in modeling results, it is recommended to perform decomposition at a two-level depth to reduce input components to the neural network model, thereby reducing the model execution time.
Irrigation
M.T. Sattari; S. Javidan
Abstract
Introduction
Surface and underground waters are one of the world's most important problems and environmental concerns. In the last few decades, due to the rapid growth of the population, the water needs have increased, followed by the input load to the water. In order to classify the quality of underground ...
Read More
Introduction
Surface and underground waters are one of the world's most important problems and environmental concerns. In the last few decades, due to the rapid growth of the population, the water needs have increased, followed by the input load to the water. In order to classify the quality of underground water and water level according to the type of consumption, there are many methods, one of the most used methods is the use of quality indicators. Considering the facilities available in water quality monitoring stations and the need to save time and money, using alternative methods of modern data mining methods can be good for predicting and classifying water quality. The process of water extraction for domestic use, agricultural production, mineral industrial production, electricity production, and ester methods can lead to the deterioration of water quality and quantity, which affects the aquatic ecosystem, that is, the set of organisms that live and interact. Therefore, it is very important to evaluate the quality of surface water in water-environmental management and in monitoring the concentration of pollutants in rivers. The aim of the current research was to estimate the numerical values of the drinking water quality index (WQI) using the tree method and investigate the effect of wavelet transformation, the Bagging method, and principal component analysis.
Materials and Methods
In this research, to calculate the WQI index from the quality parameters of the Bagh Kalaye hydrometric station including total hardness (TH), alkalinity (pH), electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca), sodium (Na), Magnesium (Mg), potassium (K), chlorine (Cl), carbonate (CO3), bicarbonate (HCO3) and sulfate (SO4) were used in the statistical period of 23 years (1998-2020). Quantitative values calculated with the WQI index were considered as target outputs. By using the relief and correlation method, the types of input combinations were determined. The random tree method was used to estimate the numerical values of the WQI index. Then, the capability of the combined approach of wavelet, principal component analysis, and Bagging method with random tree base algorithm was evaluated. To compare the values obtained from the data mining methods with the values calculated from the WQI index, the evaluation criteria of correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE), and modified Wilmot coefficient (Dr) were used.
Results and Discussion
The use of the wavelet transform method and the Bagging method has improved the modeling results. Considering that the Bagging classification method with the random tree base algorithm is a combination of the results of several random trees, so using this method has increased the accuracy of the RT model. So, in general, it was concluded that the use of wavelet transformation and classification methods increases accuracy and reduces errors. The best scenario with the highest accuracy and the lowest error was related to scenario 10 of the W-B-RT model with Total Hardness, Electrical Conductivity, Total Dissolved Solid, Sulphate, Calcium, Bicarbonate, Magnesium, Chlorine, Sodium, and potassium parameters. The results showed that the effect impact of pH in estimating the numerical value of the WQI index is considered lower than other parameters. When the principal component analysis method was used, by reducing the value of the eigenvalue from F1 to F12, the value of the factor also decreased; As a result,so F1, F2, and F3 factors were selected as the basic components. Considering 3 main factors, modeling was done employed and R=0.98, RMSE=2.17, MAE=1.52, and Dr=0.97 were obtained. In general, the results showed that the PCA method, despite reducing the dimension of the input vectors and simplifying it, can improve the accuracy and speed of the model and is introduced as the best method for estimating the numerical value of the WQI index.
Conclusion
The results obtained from the present research showed that the use of wavelet transform, Bagging and PCA methods had a positive effect on improving the results and increasing higherthe accuracy. In estimating the numerical values of WQI index, PCA-B-RT method considering 3 main factors, with correlation coefficient equal to 0.98, root mean square error equal to 2.17, average absolute value error equal to 1.52 and tThe modified Wilmot coefficient equal to 0.97 had the highest accuracy. Considering that all the methods used in the estimation of quantitative values had acceptable accuracy, therefore, in case of lack of data and lack of access to all chemical parameters, it is possible to obtain appropriate and acceptable results by using a limited number of parameters and data mining methods achieved.
S. Shahabi; M.J. Khanjani
Abstract
In this paper a method to perform Estimation of Flood Risk (EFR) is presented when the assumption of stationary is not important (or not valid). A wavelet transform model is developed to EFR. A full series is applied to EFR using energy function of wavelet. The data were decomposed into some details ...
Read More
In this paper a method to perform Estimation of Flood Risk (EFR) is presented when the assumption of stationary is not important (or not valid). A wavelet transform model is developed to EFR. A full series is applied to EFR using energy function of wavelet. The data were decomposed into some details and an approximation through different wavelet functions and decomposition levels. The approximation series was employed to EFR. This was performed using daily maximum discharge data from of the Polroud River in the north of Iran. In this way, the data from 1956 to 2007 were evaluated by wavelet analysis. The study shows that wavelet full series model results (density function) are too small compared with the results of combined method and they are both lesser than traditional methods (AM and PD). In other hand, the results of energy function method are closed to the combined method when they are compared with the full series data results. These wavelet models were assessed with the AM and PD methods. The concrete result of this paper is that, the watershed hydrologic conditions and nature of the data are very important parameters to improve FFA and to select the best method of analysis.
A. Araghi; M. Mousavi Baygi; S.M. Hasheminia
Abstract
Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. ...
Read More
Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. Wavelet transform is a mathematical based powerful method which has been widely used in signal processing and time series analysis in recent years. In this research, trend and main periodic patterns similarity in temperature and vapor pressure has been studied in Babolsar, Tehran and Shahroud synoptic stations during 55 years period (from 1956 to 2010), using wavelet method and the sequential Mann-Kendall trend test. The results show that long term fluctuation patterns in temperature and vapor pressure have more correlations in the arid and semi-arid climates, as well as short term oscillation patterns in temperature and vapor pressure in the humid climates, and these dominant periods increase with the aridity of region.