Z. Dianat Maharluei; M. Fekri; M. Mahmoodabadi; A. Saljooqi; M. Hejazi
Abstract
Introduction: Today, soil pollution is an important environmental issue that should be taken into account. Industrial activities cause pollution and accumulation of heavy metals in the soil. Soil pollution significantly reduces the quality of the environment and threatens human health. Heavy metals are ...
Read More
Introduction: Today, soil pollution is an important environmental issue that should be taken into account. Industrial activities cause pollution and accumulation of heavy metals in the soil. Soil pollution significantly reduces the quality of the environment and threatens human health. Heavy metals are one of the most important pollutants in the environment, which has received a lot of attention in recent decades. Heavy metal pollution is a serious problem in developing countries and urban areas. Among heavy metals, lead is found in large amounts in the Earth's crust, which has several effects on human health and the environment. Lead is an essential element for the plant and one of the most important pollutants, which is toxic even at very low concentrations. Its presence in the culture medium has a negative effect on germination rate, water status in the plant, dry root weight and aerial part of the plant, photosynthesis, absorption of nutrients and enzymatic activity. Much research has been done to use alternative and modern methods to clean the environment of heavy elements. One way to stabilize heavy metals in the soil is to use biochar. Due to its cation exchange capacity and high specific surface area, biochar is able to reduce the pollution caused by organic pollutants and heavy metals, stabilize heavy metals and improve the condition of plants and soil in terms of pollution. The aim of this study was to investigate the effect of modified biochars rice husk and almond soft husk on lead desorption kinetics in contaminated calcareous soil. Materials and Methods: To conduct this research, a sufficient amount of soil from a depth of zero to 30 cm was collected from the farm of Shahid Bahonar Agricultural College in Kerman. Physical and chemical properties of the studied soil were measured after air drying and passing through a 2 mm sieve. To prepare the biochars (rice husk and almond soft husk), the residues, after collection, were air-dried and ground and then packaged in aluminum foil to limit the oxygenation process. They were then placed in an oven at 500 0C for four hours to produce a charcoal called biochar. Also, to prepare the modified biochar (NaOH and HNO3), one gram of biochar was added to 100 ml of distilled water and then 10 ml of concentrated acid (or 10 g of alkali) was added to it. Stirring at 60 0C for 24 hours. Finally, it was filtered using a centrifuge and washed several times with distilled water to neutralize the pH. The produced powder was dried at 70 0C for 24 hours. The lead desorption kinetics experiment was studied at several times (5, 15, 30, 60, 120, 240, 480, 960, 1440 and 2880 minutes) in two levels of biochar (0 and 4 wt %) and three levels of lead (0, 300 and 600 mg kg-1), which were incubated for 5 months under field moisture in a greenhouse. Results and Discussion: The kinetics results showed that the desorption of lead has the same pattern in all the time studied. Early rapid desorption occurred in the early desorption times (initial 30 minutes) followed by low-velocity desorption (8 hours) and finally, equilibrium was observed in the treated and control samples. The significant difference between the amount of lead released from the treated soils and control indicated a positive effect of both used engineered biochars on reducing lead desorption. The highest amount of lead desorption was observed in soil without biochar, while the lowest desorption rate occurred in treatments of rice husk and almond soft husk modified by sodium hydroxide. The application of modified biochar rice husk highly reduced lead desorption, compared to modified biochar almond soft husk. Conclusion: According to the results, the modified biochar with sodium hydroxide caused a significant reduction in lead desorption compared to other treatments, and this reduction was more in biochar rice husk than the almond soft husk one. It can be stated that rice husk biochar has been more successful than almond soft husk biochar due to its more porous structure and cation exchange capacity. Among the equations used for lead desorption estimation, the two-constant rate equation was selected as the best model for data fit due to high explanatory coefficient (R2) and low standard error (SE). According to the above, the use of biochar can be recommended as a modifier in lead contaminated soils.
Somayeh Sefidgar; Mojtaba Barani Motlagh; farhad khormali; Esmael Dordipour
Abstract
Introduction: Soil pollution with heavy metals have become a global concern because of its damaging effects on the environment, including human health, toxicity in plants and long-term effects on soil fertility. Heavy metals stress in plants is characterized by decrease in photosynthesis, nutrient uptake, ...
Read More
Introduction: Soil pollution with heavy metals have become a global concern because of its damaging effects on the environment, including human health, toxicity in plants and long-term effects on soil fertility. Heavy metals stress in plants is characterized by decrease in photosynthesis, nutrient uptake, damaging of roots and finally plant death. Lead (Pb) is found to be the most dangerous heavy metal, responsible for reduced soil fertility and elevated environmental pollution. Lead toxicity causes the inhibition of seed germination and exerts adverse effects on growth and metabolic processes of plants, which retards plant and crop production. The overproduction of reactive oxygen species (ROS) is the best indicator for secondary stress, which results in a number of toxic effects on biochemical processes in many plant cells. The overproduction of ROS due to Pb stress brings about changes in cellular membrane permeability, which in turn damages organelles such as nuclei, mitochondria, and chloroplasts in plant cells which decreased plant growth and yield. Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. The aim of this study was to investigate the immobilization of lead in a calcareous contaminated soil using two types of biochar as organic and Pumice, Leca, Zeolite and Bentonite as inorganic amendments.
Materials and Methods: In order to investigate the effect of organic amendments (biochar 640°C, and biochar 420°C) and inorganic amendments (Pumice, Leca, Zeolite and Bentonite) on Pb stabilization in a contaminated soil (1500 mg/kg), a greenhouse experiment using maize plant was carried out. This experiment was conducted in a completely randomized design consisting of 6 types of amendments (Pumice, Leca, Zeolite, Bentonite, Biochar 420°C, and Biochar 640°C) and at 1% and 5% levels of each amendment (12 amendments plus 1 control). The experimental treatments were incubated for 3 months. At the end of incubation time, the potential bioavailability of Pb in non-amended and amended soils was assessed by chemical extractions, as: extraction with DTPA, with ammonium acetate and with ethylenediaminetetraacetic acid (EDTA). After the end of incubation time, the pots were transferred to a greenhouse and in each pot five maize seeds were planted and then reduced to three seedlings in each pot after germination. After 3 months, all the plants were harvested. The Pb concentration in each plant, its biomass, its chlorophyll and its antioxidant enzyme activities levels were analyzed. All statistical analyses were performed using SAS software. Means of different treatments were compared using LSD (P ≤0.05) test.
Results and Discussion: The results indicated that the addition of amendments to soils reduced the concentration of Pb extracted with DTPA and EDTA. The 5% biochar 640 had the greatest reduction effect on DTPA-extractable Pb. The smallest concentration of Pb in the leaves and root of maize plant was observed in treated soil with organic amendments (biochar 640°C, and biochar 420°C) and treated with 5% zeolite, respectively. The highest increase in plant growth parameters like SPAD value, leaf area, plant height, number of leaves per plant, dry biomass yield and dry matter of roots were observed in organic amendments compared to the control. The application of 5% amendments in soil caused a significant increase in plant height and number of leaves as compared to control. The increase in growth and biomass of zea mays L. under various amendments might be due to decreased bioavailable Pb concentrations in soil amended which may be attributed to reduced Pb toxicity through improvement of soil fertility. Also, the application of amendments resulted in a significant increase in antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), and ascorbate peroxidase (ASP) in maize plants compared to the control. The increase of leaves enzyme activities with addition amendments may be due to a lower Pb accumulation in leaves because excess Pb generates free radicals and reactive oxygen species (ROS) those causes oxidative stress in plants.
Conclusions: The results indicated that the application of amendments were successful in lowering the potential bioavailability of Pb in the soils. The 5% biochar 640 treatment had the greatest reduction effect on extractable Pb. The application of amendments decreased the uptake and accumulation of Pb in maize plants, via the reduction of DTPA- extractable Pb. The amendments also significantly increased leaves antioxidant enzyme activities and photosynthetic pigments compared to the control.
Nastaran Esmaeilpourfard; J. Givi; A. Davodian
Abstract
Introduction Due to mining, considerable amounts of heavy metal bearing mineralsare scattered in the atmosphere in the form of dust and make the surrounding air, water and soils polluted.Runoff water movingfrom the mountainstowardsplains may also transport heavy metals from mines to the soils.One type ...
Read More
Introduction Due to mining, considerable amounts of heavy metal bearing mineralsare scattered in the atmosphere in the form of dust and make the surrounding air, water and soils polluted.Runoff water movingfrom the mountainstowardsplains may also transport heavy metals from mines to the soils.One type ofpollutions is contamination withheavy metals.The purpose of the present research has been to investigate the effect of heavy metals of mine on soil, water, plant and dust pollution.
Materials and Methods: Gushfil mine is located 3 kilometers southwest of Sepahanshahr, Isfahan. Soil profiles were dug 500 meters apart along three parallel transects, between east of Sepahanshahr and Gushfil mine. The profiles were described and samples were collected from their horizons. Ore, wells, plant and dust were sampled as well. Total concentrations of lead, zinc and cadmium were measured in the samples. To find the origin of polluted dust and soil, lead isotopes contents in the samples were measured and regressional relationships between the ratios of these contents were investigated.
Results and Discussion Sepahanshahr soils are not contaminated by zinc, lead and cadmium, but within a distance of one to two kilometers from the Gushfil mine, the soils are polluted by zinc and lead. Cadmium contamination was not observed in the studied soils. In all of the soils, the heavy metals content varies downwards irregularly. The reason for this variation trend is that the studied soils are alluvial. In different periods of time, alluvium parent materials have been transported by runoff water from the lead and zinc mines towards the alluvial piedmont plain. The studied heavy metals have been distributed irregularly in different horizons of the soils that have been formed in these parent materials. Lead and cadmium concentrations of drinking water in the studied area are much higher than the maximum amount allowed by the World Health Organization. Cadmium content in all trees of the Sepahanshahr urban park and in alfalfa, lead content in olive trees and lead and cadmium concentrations in Holly hock (Althaea officinalis), Spurge (Euphorbiarigida) and Rhizome (Acanthe phylum bracteatum)are higher than dietaryallowance. Significant correlation between heavy metal concentrations reduction in dust samples and increase of distance from the mine expresses that contaminant heavy metals enter the atmosphere due to mine explosions. In dolomitic sandstone rich in sphalerite mineral, the total amounts of lead and zinc are maximum. The maximum amount of cadmium and too much lead and zinc were observed in a shale fragment, sampled from a location of a fault in the mine. Contents of the three metals were less in black and green shales, compared with the other samples. In dolomitic sandstone rich in gallon mineral, the amounts of the three metals are high and its lead content is maximum with respect to other rocks excluding dolomitic sandstone rich in sphalerite mineral. Significant correlation between ratios of lead isotopes contents of the rocks, soil and dust showed that the soils of the alluvial piedmont plain located at the footslope of the western mountains of the studied area have formed in alluvium parent materials originated from western mountains. The studied heavy metals have been transported together with these alluviums from the mine towards the alluvial piedmont plain. The other origin of these metals is the dust which is produced during the Gushfil mine explosions. This dust is translocated towards the Sepahanshahr and makes the surrounding environment of the mine polluted.
Conclusions: Origin of zinc, lead and cadmium in soil, water, plant and dust in the studied area is rocks of Gushfil mine. Transportation of these metals from the mine towards the environment can be explained by two mechanisms: 1) together with runoff water flowing from the western mountains towards the alluvial piedmont plain and 2) in the form of dust which originates from the mine and moves eastwards. The soils are not contaminated with cadmium. With increase of distance from the mine, contamination of lead and zinc decreases in soil and dust in such a way that in the Sepahanshahr soils, pollution of these metals is not observed. The soils located within a distance of 1 to 2 kilometers from the Gushfil mine are contaminated with lead and zinc. Water is polluted with lead and cadmium and the cadmium content of the plants is higher than dietaryallowance.
ghodsie hoseinian rostami; Ahmad Gholamalizadeh Ahangar
Abstract
Adding heavy metals to soils leads to change of their original distribution pattern. Heavy metals distribution in soils depends upon heavy metal, application level, application time and soil characteristics as well. This investigation was conducted to assess the time effect on distribution of different ...
Read More
Adding heavy metals to soils leads to change of their original distribution pattern. Heavy metals distribution in soils depends upon heavy metal, application level, application time and soil characteristics as well. This investigation was conducted to assess the time effect on distribution of different fractions of Lead in soils. The experiment conducted as a factorial in a completely randomized design with three replications and two levels of cow manure (0 and 5%) and two levels of Lead using Lead nitrate (0 and 200 mg kg-1). Samples were incubated at 250C and 60% of field capacity for 120 days with different time intervals (0-30, 0-60, 0-90 and 0-120 day) to determine Lead fractions using sequential extraction methods. The results showed that Lead concentration decrease in exchangeable, carbonated and residual fractions during the time. Also the interactions between cow manure and time cause of decreases in the exchangeable and residual fractions and increases in the carbonated, Fe-Mn oxides-bound as well as organic matter-bond fractions. The interactions between time and Lead concentration lead to decrease in the exchangeable, carbonated and residual fractions and increase in the Fe-Mn oxides-bound and organic matter-bond Lead fractions. Since the most availability and toxic potential of lead is in the exchangeable-solution, the advantage of the this study is to reduce potion of this section during the time.
E. Babaeian; M. Homaee; R. Rahnemaie
Abstract
Phytoextraction is a remediation technology for contaminated soils with lead (Pb). The application of chelating agents can be resulted in high efficiency in this method. In current study, the effect of synthetic and natural chelates applicationon efficiency of lead phytoextraction from soil by carrot ...
Read More
Phytoextraction is a remediation technology for contaminated soils with lead (Pb). The application of chelating agents can be resulted in high efficiency in this method. In current study, the effect of synthetic and natural chelates applicationon efficiency of lead phytoextraction from soil by carrot was investigated. The experiment factors were 1) six levels of Pb (0, 100, 200, 300, 500 and 800 mg Pb kg-1 soil, added as Pb(NO3 )2, 2) chelates (EDTA, NTA and oxalic acid, and 3) chelate concentration (0, 2.5, 5 and 10 mmol kg-1 soil). The results indicated that EDTA effectively increased the Pb content in soil solution. At the highest applied rate (10 mmol EDTA kg-1), it resulted in 463-fold increase in extractable Pb, compared to the control treatment. Pb content in the shoot and taproot increased with the chelates application rates.The highest Pb content in the shoot (342.2±13.9 mg kg-1) and root (310 ±15.5 mg kg-1) occurred in 10 mmol kg-1 EDTA when Pb level was 800 mg kg-1. Pbphytoextraction potential increased with increasing thechelate and Pb concentration. Maximum Pb extraction from soil (1208±26.6 g ha-1 yr-1) during growth season occurred in 10 mmol kg-1 EDTA, when soil Pb level was 800 mg kg-1. It may be concluded that carrot can take up high amount of Pb and concentrate it in its roots and shoots. Thus, it can be introduced as a lead accumulator to phytoextractPb from contaminated soils.