شبیه سازی اثر تغییر اقلیم بر نمو، نیاز آبیاری و عملکرد سویا در گرگان

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه علوم کشاورزی ومنابع طبیعی گرگان

چکیده

هدف از این تحقیق، بررسی اثر افزایش دما و غلظت های مختلف CO2 بر روز تا رسیدگی، نیاز آبیاری و عملکرد سویا (رقم سحر) در شرایط آبی گرگان با استفاده از مدل SSM-iLegume بود. ترکیبی از سناریوهای مختلف تغییر اقلیم شامل کاهش 1، 2، 3، 4، افزایش 1، 2، 3، 4، 5، 6، 7 و 8 درجه سانتی گرادی دما، عدم تغییر دما و غلظت های CO2 به میزان350، 400، 450، 500، 550، 600، 650 و 700 پی پی ام درنظر گرفته شد. نتایج نشان دادکاهش دما نسبت به شرایط کنونی روز تا رسیدگی از 130 روز به 175 روز افزایش می دهد. با افزایش 1 تا 6 درجه دما نسبت به شرایط کنونی روز تا رسیدگی از 130 روز به 115 روز کاهش پیدا می کند. در یک دمای ثابت تغییرات غلظت CO2 اثری بر روز تا رسیدگی ندارد.در دمای ثابت با افزایش غلظت CO2 از 350 به 700 پی پی ام، کاهش بین 30 تا 40 میلی متر نیاز آبیاری قابل انتظار می باشد. کاهش بیش از 2 درجه دما نسبت به شرایط کنونی عملکرد بین 10 تا 20 گرم درمترمربع کاهش می دهد. در این شرایط با افزایش غلظت CO2 از شدت کاهش عملکرد کاسته می شود. درصورت افزایش 2 تا 3 درجه دما نسبت به شرایط کنونی عملکرد به میزان 20 گرم درمترمربع افزایش می یابد. تفاوت عملکرد در این شرایط بین غلظت 350 و 700 پی پی ام CO2 30 گرم درمترمربع بود. افزایش 3 تا 8 درجه دما نسبت به شرایط کنونی سبب کاهش عملکرد از حدود 400 به 250 گرم در مترمربع می گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulate the Effect of Climate Change on Development, Irrigation Requirements and Soybean Yield in Gorgan

نویسندگان [English]

  • A.R. Nehbandani
  • A. Soltani
Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Introduction: Atmospheric CO2 concentration has continuously been increasing during the past century and it is expected to increase from current 384 ppm to 550 ppm in 2050. This increase is expected to increase global temperature by 1.4 to 5.8 oC which can have major effects on crop plants. Since both CO2 and temperature are among the most important environmental variables that regulate physiological and phenological processes in plants, it is critical to evaluate the effects of CO2 and air temperature on the growth and yield of key crop plants.
Warming of Earth's atmosphere can increase dark respiration and photorespiration in C3 plants. Rate of photosynthesis is affected by temperature, Therefore, rate of biochemical reactions, morphological reactions, CO2 and energy exchange with the atmosphere could be affected by temperature.
Increase in CO2 concentration causes further yield improvement in C3 plants (Such as wheat, rice and soybeans) in comparison with C4 plants (Such as corn, sorghum and sugarcane). In general, increasing CO2 concentration affects plant processes in two ways:direct effect on physiological processes in plant and indirect effect by changes in temperature and rainfall.
Studying climate change effects including increase in temperature and CO2 concentration can help understanding adaptation strategies to reach higher and sustainable crop yields. Therefore, the objective of this research was to examine the effects of temperature and CO2 changes on days to maturity, irrigation water requirement, and yield in soybean under irrigation conditions of Gorganusing SSM-iLegume-Soybean model.
Materials and methods: The model SSM-iLegume-Soybean simulates phenological development, leaf development and senescence, crop mass production and partitioning, plant nitrogen balance, yield formation and soil water and nitrogen balances. The model includes responses of crop processes to environmental factors of solar radiation, temperature and nitrogen and water availability. The soybean model was used to run different scenarios including combination of -1, -2, -3, -4, 0, 1, 2, 3, 4, 5, 6, 7, 8 oC changes in temperature and CO2 concentration of 350, 400, 450, 500, 550, 600, 650, 700 ppm. Actual weather data in Gorgan (latitude 37 degrees 45 minutes north, longitude 54 degrees 30 minutes east) of 1980 to 2009 was used as baseline climate and then changed to obtained future temperature climates. To account for direct effect of CO2 concentration, two model parameters of radiation use efficiency and transpiration efficiency coefficient were changed for higher CO2 concentration (350 ppm as current conditions). Increasing CO2 concentration from 350 to 700 ppm will increase radiation use efficiency by 23% and transpiration efficiency coefficient by 37%. By running the model for each year under each scenario, output of the model recorded and analyzed using response surface method in SAS.
Results and discussion: Decreasing temperature increased days to maturity from 130 to 175 days. However, increase in temperature from 1 to 6 oC decreased days to maturity from 130 to 115 days due to higher development rate. No effect of CO2 on phenological development was assumed.
At each temperature, increasing CO2 concentration from 350 to 700 ppm, decreased irrigation water requirement by 30 to 40 mm which is a result of reducing stomata conductance and increase in transpiration efficiency. Temperature increase from 3 to 8oC also decreased irrigation water requirement by 90 mm due to shortening growing season and irrigation number.
Decrease in temperature more than 2oC decreases crop yield by 10 to 20 g m-2, but increase in CO2 concentration will compensate this decrease. Increasing temperature by 2 to 3 oC will increase crop yield by 20 g m-2. Increase in temperature from 3 to 8 oC decreases crop yield from 400 g m-2 to 500 g m-2. Yield reduction due to this temperature rise will occur later as a result of increase in CO2 concentration.
Conclusion: The effect of temperature and CO2 concentration were studied in soybean by SSM-iLegume-Soybeanmodel. The results indicated that yield reduction increase in CO2 concentration postpones the negative effect of higher temperature on soybean yield. On the other hand, super-optimal temperatures will decrease positive impact of increase in CO2 concentration. Therefore, with regard to the effect the following strategies proposed: improve in irrigation method, development of drought and high-temperature tolerant cultivars, increase in water use efficiency, early sowing and development of longer-duration cultivars.

کلیدواژه‌ها [English]

  • changes in temperature
  • changing the concentration of CO2
  • Irrigation requirements
  • days to maturity
  • model SSM-iLegume
1- Ainsworth E.A., Davey P.A., Bernachhi C.J., Dermody O.C., Heaton E.A.,Moore D.J., Morgan P.B., Naidu S.L., Ra H.S.Y., Zhu X.G., CurtisP.S., and Long S.P. 2002. A meta-analysis of elevated CO2 effectson soybean (Glycine max L.) physiology, growth and yield.Global Change Biology, 8(8):695–709.
2- Allen L.H., and Boote K.J. 2000. Crop ecosystem responses to climatechange: soybean. p. 133-160. In Reddy K.R., Hodges H.F. (ed.) Climate Changeand Global Crop Productivity. CABI Publishing, Oxon, UK.
3- Allen L.H., Valle R.R., Mishoe J.W., and Jones J.W. 1994. Soybean Leaf gas-exchangeresponses to carbon dioxide and water stress. Agronomy Journal, 86(1):625-636.
4- Amthor J.S. 2001. Effects of atmospheric CO2 concentration on wheat yield: reviewof results fromexperiments using various approaches to control CO2 concentration. Field Crops Research, 73(4):1–34.
5- Asseng S., Jamieson P., Kimball B., Pinter P., Sayre K., Bowden J., and Howden S. 2004. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85(2):85-102.
6- Bernacchi C.J., Kimball B.A., Quarles D.R., Long S.P., and Ort D.R. 2007. Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiology, 143(1):134-144.
7- Bunce J.A., Ziska L.H. 1996. Responses of respiration to increase in carbondioxide concentration and temperature in three soybean cultivars. AnnalsBotany, 77(3): 507–514
8- Carter T.R., Jones R.N., Lu X.L. 2007. New assessment methods and the characterization of future conditions. In: Climate Change 2007: Impacts, Adaptation andVulnerability, Contribution ofWorking Group II to the Fourth Assessment Reportof the Intergovernmental Panel on Climate Change. IPCC. Cambridge UniversityPress, Cambridge, UK.
9- Fischer G., Tupelo F.N., van Velthuizen H., and Wiberg D.A. 2007. Climate changeimpactson irrigation water requirements: effects of mitigation, 1990–2080.Technological Forecasting SocialChange, 74(7):1083–1107.
10- Gholipoor M., and Soltani A. 2005. Effects of climate change on growth characteristics and yield of winter wheat in dryland and irrigated conditions of the Tabriz using simulation. Journal of Agricultural Knowledge, 15(3):163-176.(in Persian)
11- Giannakopoulos C., Le Sager P., Bindi M., Moriondo M., Kostopoulou E., and Goodess, C.M. 2009. Climatic changes and associated impacts in the Mediterraneanresulting from a 2Cglobal warming. Global Planet Change, 68(2): 209–224.
12- Hajarpour A.,Soltani A.,Zeinali E., and Sayyedi F. 2013. Simulating the impact of climate change on production of Chickpea inrainfed and irrigated condition of Kermanshah. Journal of Plant Production, 20 (2):235-252. (in Persian with English abstract)
13- Heinemann A. B., Maia A. D. H., Dourado-Neto D., Ingram K., and Hoogenboom G. 2006. Soybean (Glycine max (L.) Merr.) Growth and development response to CO2 enrichment under different temperature regimes. European journal of agronomy, 24(1):52-61.
14- Islam A., Ahuja L.R., Garcia L.A., Ma L., Saseendran A.S., and Trout T.J. 2012. Modeling the impacts of climate change on irrigated corn production in the Central Great Plains. Agricultural Water Management, 110(1):94-108.
15- JU H., LIN E.-d., Wheeler T., Challinor A., and JIANG S. 2013. Climate change modelling and its roles to Chinese crops yield. Journal of Integrative Agriculture, 12(5):892-902.
16- Knox J.W., Rodriguez Diaz J.A., Nixon D.J., Mkhwananzi M., 2010. A preliminary assessment ofclimate change impacts on sugarcane in Swaziland. Agricultural System, 103(1):63–72.
17- Kobata T. 2007. Estimation of crop production by the future climate changes insurrounding areas of the Seyhan River in Turkey, The ICCAP (impact of climatechanges on agricultural production system in aridareas) project final report, 4pp. Available at http://www.chikyu.ac.jp/iccap/finalreport.htm.
18- Koocheki A., andNassiri M. 2008. Impacts of climate change and CO2 concentration on wheat yield inIran and adaptation strategies.Journal Iranian Agricultural Research. 6(1):139-153.(in Persian with English abstract)
19- Koocheki A., Nassiri M., Soltani A., Sharif H, and Ghorbani R. 2006. Effects of climate change on growth criteria and yield of sunflower and chickpea crops in Iran.Climate Research, 30: 247-253.
20- Lovelli S., Perniola M., Di Tommaso T., Ventrella D., Moriondo M., Amato M. 2010.Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterraneanarea. Agricultural Water Management, 97(8):1287–1292.
21- Mall R., Lal M., Bhatia V., Rathore L., and Singh R. 2004. Mitigating climate change impact on soybeanproductivity in India: a simulation study. Agricultural and forest meteorology, 121(2):113-125.
22- Ohe I., Reiko U., Jyo S., Kuramashi T., Saitoh, K., Kuroda, T., 2007. Effect of risingtemperature on flowering, pod set, dry matter production and seed yield insoybean. Jupon Journal Crop Science, 76(1):433–444.
23- Prasad P.V.V., Boote L.H., Allen J.E., Sheehy and Thomas J.M.G. 2006. Species, ecotype and cultivardifferences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 95(3):398–411.
24- Pritchard S.G., Rogers H.H., Prior S.A., Peterson C.M. 1999. Elevated CO2 and plant structure: a review. Global Change Biology, 5(5):807–837.
25- Rodriguez-Diaz J.A., Weatherhead E.K., Knox J.W., Camacho E. 2007. Climatechange impacts on irrigation water requirements in the Guadalquivir river basinin Spain. Reg. Environment Change, 7(2):149–159.
26- Soltani A., and Gholipoor M. 2006. Simulatiting the impact of climate change on growth, yield and water use of chickpea. Journal of Agricultural Science and Natural Resource, 13(2):69-79. (in Persian with English abstract)
27- Soltani A., and Sinclair T. R. 2012. Modeling physiology of crop development, growth and yield. Cabi.
28- Soltani, A. 2007. Use of the SAS statistical analysis software. Mashhad University of Jahad publications.
29- Soltani, A., Gholipoor, M. and Ghassemi-Golezani, K. 2007. Analysis of temperature and atmospheric CO2 effects on radiation use efficiency in chickpea (Cicerarietinum L.). Journal of Plant Science. 2(1):89-95.
30- Tacarindua C. R., Shiraiwa T., Homma K., Kumagai E., and Sameshima R. 2013. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crops Research, 154(1):74-81.
31- Wall G.W., Garcia R.L., Wechsung F., and Kimball B.A. 2011. Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley. Agriculture Ecosystems and Environment, 144(2):390-404.
32- Wheeler T.R., Hong T.D., Ellis R.H., Batts G.R., Morison J.I.L., Hadley P. 1996. Theduration and rate of grain growth, and harvest index, of wheat (TriticumaestivumL.) in response to temperature and CO2Journal of Experimental Botany, 47(5):623–630.
33- Wilcox J., and Makowski D. 2014. A meta-analysis of the predicted effects of climate change on wheat yields using simulation studies. Field Crops Research, 156(2):180-190.
CAPTCHA Image