بررسی تأثیر بایوچارهای مهندسی شده بر سینتیک واجذب سرب در خاک آهکی آلوده

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

3 استاد گروه شیمی، دانشکده علوم، دانشگاه شهید باهنر کرمان، کرمان، ایران

4 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در سال­های اخیر، برخی از محققین بر این باورند که کاربرد بایوچار خام در محیط­های بسیار آلوده نمی­تواند بر جذب آلاینده­های مختلف موثر باشد، بنابراین به منظور حل این مشکل، بایوچارهای مهندسی شده با خصوصیات و ساختارهای جدید را پیشنهاد کردند. با توجه به این مساله، در این پژوهش با کاربرد دو نوع بایوچار (پوست نرم بادام و پوست برنج) اصلاح شده با NaOHوHNO3در سطوح صفر و 4 درصد وزنی به خاک هر گلدان افزوده و به مدت یک ماه در شرایط رطوبت مزرعه­ای نگهداری شدند. سپس سرب در سه سطح صفر، 300 و 600 میلی­گرم بر کیلوگرم به خاک گلدان­ها اضافه گردید در همان شرایط قبلی به مدت 5 ماه نگهداری شدند. بعد از گذشت 5 ماه انکوباسیون، سینتیک واجذب سرب در خاک مورد مطالعه بررسی گردید. نتایج نشان داد که در زمان­های آغازین سرعت واجذبی سریع (30 دقیقه اولیه) و به دنبال آن واجذبی با سرعتی کمتر (8 ساعت) تا در نهایت رسیدن به تعادل در نمونه­ها مشاهده گردید. تغییرات حاصله از میزان آزاد سازی سرب در خاک­ تیمار شده نسبت به شاهد نشان­دهنده تاثیر مثبت بایوچارهای اصلاح شده در این تحقیق می­باشد. افزودن بایوچار پوست نرم بادام و پوست برنج اصلاح شده با NaOHوHNO3 به خاک منجر به کاهش واجذب سرب در تمام زمان­های عصاره­گیری نسبت به تیمار شاهد گردید، در حالیکه بایوچار پوست برنج در مقایسه با بایوچار پوست نرم بادام تاثیر بیشتری را در کاهش واجذبی سرب نشان داد. همچنین کمترین میزان واجذبی مربوط به بایوچار پوست برنج اصلاح شده با NaOHمی­باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Engineered Biochars on Lead Desorption Kinetics in Contaminated Calcareous Soils

نویسندگان [English]

  • zahra dianat maharluei 1
  • M. Fekri 2
  • M. Mahmoodabadi 2
  • A. Saljooqi 3
  • M. Hejazi 4
1 Ph.D. Student, in Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 Professor in Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
3 Professor in Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
4 Associate Professor in Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Introduction: Today, soil pollution is an important environmental issue that should be taken into account. Industrial activities cause pollution and accumulation of heavy metals in the soil. Soil pollution significantly reduces the quality of the environment and threatens human health. Heavy metals are one of the most important pollutants in the environment, which has received a lot of attention in recent decades. Heavy metal pollution is a serious problem in developing countries and urban areas. Among heavy metals, lead is found in large amounts in the Earth's crust, which has several effects on human health and the environment. Lead is an essential element for the plant and one of the most important pollutants, which is toxic even at very low concentrations. Its presence in the culture medium has a negative effect on germination rate, water status in the plant, dry root weight and aerial part of the plant, photosynthesis, absorption of nutrients and enzymatic activity. Much research has been done to use alternative and modern methods to clean the environment of heavy elements. One way to stabilize heavy metals in the soil is to use biochar. Due to its cation exchange capacity and high specific surface area, biochar is able to reduce the pollution caused by organic pollutants and heavy metals, stabilize heavy metals and improve the condition of plants and soil in terms of pollution. The aim of this study was to investigate the effect of modified biochars rice husk and almond soft husk on lead desorption kinetics in contaminated calcareous soil.
Materials and Methods: To conduct this research, a sufficient amount of soil from a depth of zero to 30 cm was collected from the farm of Shahid Bahonar Agricultural College in Kerman. Physical and chemical properties of the studied soil were measured after air drying and passing through a 2 mm sieve. To prepare the biochars (rice husk and almond soft husk), the residues, after collection, were air-dried and ground and then packaged in aluminum foil to limit the oxygenation process. They were then placed in an oven at 500 0C for four hours to produce a charcoal called biochar. Also, to prepare the modified biochar (NaOH and HNO3), one gram of biochar was added to 100 ml of distilled water and then 10 ml of concentrated acid (or 10 g of alkali) was added to it. Stirring at 60 0C for 24 hours. Finally, it was filtered using a centrifuge and washed several times with distilled water to neutralize the pH. The produced powder was dried at 70 0C for 24 hours. The lead desorption kinetics experiment was studied at several times (5, 15, 30, 60, 120, 240, 480, 960, 1440 and 2880 minutes) in two levels of biochar (0 and 4 wt %) and three levels of lead (0, 300 and 600 mg kg-1), which were incubated for 5 months under field moisture in a greenhouse.
Results and Discussion: The kinetics results showed that the desorption of lead has the same pattern in all the time studied. Early rapid desorption occurred in the early desorption times (initial 30 minutes) followed by low-velocity desorption (8 hours) and finally, equilibrium was observed in the treated and control samples. The significant difference between the amount of lead released from the treated soils and control indicated a positive effect of both used engineered biochars on reducing lead desorption. The highest amount of lead desorption was observed in soil without biochar, while the lowest desorption rate occurred in treatments of rice husk and almond soft husk modified by sodium hydroxide. The application of modified biochar rice husk highly reduced lead desorption, compared to modified biochar almond soft husk.
Conclusion: According to the results, the modified biochar with sodium hydroxide caused a significant reduction in lead desorption compared to other treatments, and this reduction was more in biochar rice husk than the almond soft husk one. It can be stated that rice husk biochar has been more successful than almond soft husk biochar due to its more porous structure and cation exchange capacity. Among the equations used for lead desorption estimation, the two-constant rate equation was selected as the best model for data fit due to high explanatory coefficient (R2) and low standard error (SE). According to the above, the use of biochar can be recommended as a modifier in lead contaminated soils.

کلیدواژه‌ها [English]

  • almond soft husk
  • Lead
  • Nitric acid
  • rice husk
  • Sodium hydroxidey
1- Abaspour A., Kalbasi M., Haj Rasoliya Sh., and Gholchin A. 2005. Investigating the contamination of some Iranian agricultural lands with cadmium and lead. Ninth Iranian Soil Science Congress, Tehran 543-545. (In Persian)
2- Adhikari T., and Singh M.V. 2003. Sorption characteristics of lead and cadmium in some soils of India. Geoderma 114: 81–92.
3- Ahmad M., Rajapaksha A.U., Lim J.E., Zhang M., Bolan N., Mohan D., Vithanage M., Lee S.S., and Ok Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99: 19-33.
4- Allison L.E., and  Moodie C.D. 1965. Carbonate. p. 1379 -1396. In C.A. Black (ed.). Methods of Soil Analysis. part 2. American. Society. Agronomy, Madison. WI.
5- Beesley L., and Marmiroli M. 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution 159: 474-480.
6- Bian R., Joseph S., Cui L., Pan G., Li L., Liu X., and Donne S. 2014. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials 272: 121-128.
7- Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54: 464-465.
8- Bremner J.M. 1996. Nitrogen Total. In: D.L. Sparks et al., (eds) Methods of Soil Analysis. 1085–1122. part 3-American. Society. Agronomy, Madison. WI.
9- Canbay M., Aydin A., and Kurtulus C. 2010. Magnetic susceptibility and heavy-metal contamination in topsoils along the Izmit Gulf coastal area and IZAYTAS (Turkey). Journal of Applied Geophysics 70: 46-57.
10- Dabrowski A., Hubicki Z., Podkoscelny P., and Robens E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56: 91-106.
11- Dai S., Li H., Yang Z., Dai M., Dong X., Ge X., Sun M., and Shi L. 2018. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Human Ecological Risk Assess 24: 1887–1900.
12- Dang Y.P., Dalal R.C., Edwards D.G., and Tiller K.G. 1994. Kinetics of zinc desorption from vertisols. Soil Science Society of America Journal 58: 1392-1399.
13- Dehkhoda A.M., Ellis N., and Gyenge E. 2016. Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions, Microporous and Mesoporous Materials 224: 217–228.
14- Ding Z., Hu X., Wan Y., Wang S., and Gao B. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry 33: 239–245.
15- Dong D., Zhao X., Hua X., Liu J., and Gao M. 2009. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in northeast China. Journal of Hazardous Materials 162: 1261- 1268. 
16- Fan Y, Wang B, Yuan S, Wua X, Chen J, and Wang L. 2010. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology 101: 7661–7664.
17- Fellet G., Marchiol L., Delle Vedove G., and Peressotti A. 2011. Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83: 1262-1267.
18- Gaskin J., Steiner C., Harris K., Das K., and Bibens B. 2008. Effect of low_ temperature pyrolysis conditions on biochar for agriculture use. Transaction of the Asabe 51: 2061-2069.
19- Hall G., Woodborne S., and Scholes M. 2008. Stable carbon isotope rations from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology 247: 384-400.
20- Haluschak P. 2006. Laboratory methods of soil analysis. Canada -Manitoba soil survey 3-133.
21- Han F.X., Banin A., and Triplett G.B. 2001. Redistribution of heavy metals in arid- zone soils under a wetting- drying cycle soil moisture regime. Soil Science Journal 166: 18- 28.
22- Hutchison J.M., Seaman J.C., Aburime S.A., and Radcliffe D.E. 2003. Chromate transport and retention in variably saturated soil columns. Vadose Zone Journal 2: 702–714.
23- Jiang J., Xu R., Kou M., Jiang T., Yu S., and Li, Z. 2012. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials 229-230: 145-150.
24- Kim B., and. McBride M.B. 2006. A test of sequential extraction for determining metal speciation in sewage sluge- amended soils. Environmental Pollution Journal 144: 475 - 482.
25- Krishnamurti G.S.R., Huang P.M., and Kozak L.M. 1999. Sorption and desorption kinetics of cadmium from soils: influence of phosphate. Soil Science Journal 164: 888-898.
26- Kumpiene J., Lagerkvist A., and Maurice C. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Management 28: 215-225.
27- Li J.S., Wang P., and Liu L. 2013. Environmental prediction model for dynamic release of lead in contaminated soil under washing remediation. Electronic Journal of Geotechnical Engineering 18: 55-70.
28- Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421-428.
29- Lone M.I., He Z., Stoffella P.J., and Yang X. 2008. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal Zhejiang University Science 9: 210-220.
30- Lua A.C., Yang T. and Guo J. 2004. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. Journal of Analytical and Applied Pyrolysis 72: 279-287.
31- Lu S.G., Sun F.F., and Zong Y.T. 2014. Effect of rice husk biochar and coalfly ash on some physical properties of expansive clayey soil (Vertisol). Catena 114: 37–44.
32- Luo C., Shen Z., Lou S., and Li X. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59: 1–11.
33- Ma L.Q., and Gade R.N. 1997a. Chemical Fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal Environmental Science 26: 259 - 264.
34- Ma L., Xu R., and Jiang J. 2010b. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. Journal Environmental Science 22: 689– 695.
35- Mouni L., Merabet D., Robert D., and Bouzaza A. 2009. Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ on to Amizour soil (Algeria). Geoderma 154: 30-35.
36- Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. p. 961-1010. 3rd Ed. In: Sparks, D. L., et al., (Ed). Methods of Soil Analysis. Part 3- chemical methods and microbiological properties. Soil Science of America and American Society of Agronomy, Madison, Wisconsin.
37- Norozi M., Tabatabaii S.H., Norozi M.R., and Motaghyan H.R. 2016. Biochar short-term effects of date leaves on maintaining moisture in sandy loam soil. Journal of Water and Soil Conservation 6: 137-150. (In Persian)
38- Padmanabham, M. 1983. Comparative study of the adsorption - desorption behaviour of copper (II), zinc (II), cobalt (II) and lead (II) at the geothite solution interface. Australian Journal Soil Research 21: 515-525.
39- Park J.H., Ok Y.S., Kim S.H., Cho J.S., Heo J.S., Delaune R.D., and Seo D.C. 2016. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 31: 142. 77-83.
40- Puga A.P., Abreu C.A., Melo L.C.A., and Beesley L. 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management 159: 86-93.
41- Rhoades J.D., Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., and Sumner M.E. 1996. Salinity: Electrical conductivity and total dissolved solids. p. 417-435. Methods of Soil Analysis. Part 3-Chemical Methods.
42- Song W. and Guo M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 94: 138-145.
43- Stewart M.A., Jardine P.M., Barnett M.O., Mehlhoun T.L., Heyder L.K., and Mckay L.D. 2003. Influence of soil geochemical and physical properties on the sorption and bioaccessibility of chromium (III). Journal Environmental Quality 32: 129-137.
44- Sumner M.E., Miller W.P., Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., and Johnston C.T. 1996. Cation exchange capacity and exchange coefficients. p. 1201-1229. Methods of Soil Analysis. Part 3-Chemical Methods.
45- Thomas G.W. 1996. Soil pH and soil acidity. p. 475- 490. In D.L. Sparks et al., (eds) Methods of Soil Analysis. part 3-American  Society of Agronomy., Madison. WI.
46- Uchimiya M., Bannon D.I., and Wartelle L.H. 2012. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. Journal of Agricultural and Food Chemistry 60: 1798–1809.
47- Wang H., Gao B., Wang S., Fang J., Xue Y., and Yang, K. 2015. Removal of Pb. II, Cu. II, and Cd. II from aqueous solutions by biochar derived from KMnO 4 treated hickory wood. Bioresource Technology 197: 356-362.
48- Xu Z., Xu X., Tsang D.C.W., Cao X. 2018. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils. Environmental Pollution 242: 1362–1370.
49- Yang J.Y., Yang, X.E. He Z.L., Li T.Q., Shentu J.L., and Stoffella P.J. 2006. Effects of pH, organic acids, and inorganic ions on lead desorption from soils. Environmental Pollution 143: 9–15.
50- Yu X.Y., Ying G.G., and Kookana R.S. 2009. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76: 665–671.
51- Zhang W.X. 2003a. Nano scale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 5: 323–332.
52- Zhang R.H., Li Z.G., Liu X.D., Wang B.C., Zhou G.L., Huang X.X., Lin C.F., Wang A.H., and Brooks M. 2017b. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice strawderived biochar. Ecologecal Engenearing 98: 183–188.