مقایسه کارایی گیاهان مختلف در حذف هیدروکربن‌های نفتی کل از خاک‌های مناطق نفت‌خیز

نوع مقاله : مقالات پژوهشی

نویسندگان

1 کارشناس ارشد حاصلخیزی و زیست‌فناوری خاک، گروه علوم و مهندسی خاک، دانشگاه رازی، کرمانشاه، ایران.

2 دانشیار گروه علوم و مهندسی خاک، دانشگاه رازی، کرمانشاه، ایران

3 دکتری علوم خاک، گروه علوم خاک دانشگاه صنعتی اصفهان، ایران.

4 استادیار گروه شیمی تجزیه، دانشگاه رازی، کرمانشاه، ایران.

چکیده

آلودگی خاک با هیدروکربن‌های نفتی یک مشکل زیست‌محیطی مهم است. روش‌های فیزیکی و شیمیایی متعددی برای مقابله با آلودگی‌های نفتی در خاک وجود دارد. گیاه‌پالایی یک فناوری نسبتاً نوین پالایش خاک‌های آلوده است که در آن از گیاهان مقاوم و مناسب جهت حذف یا کاهش غلظت آلاینده‌ها از محیط‌زیست استفاده می‌شود. در این پژوهش، خاک آلوده به هیدروکربن‌های نفتی از اطراف چاه‌های استخراج نفت غرب استان کرمانشاه برداشت شد. محل نمونه-برداری خاک غیر آلوده کم‌ترین فاصله را با محل نمونه‌برداری خاک آلوده داشت. پس از تعیین مقدار کل هیدروکربن‌های نفتی در خاک‌های آلوده، خاک‌های آلوده با خاک غیر آلوده در 4 نسبت وزنی مختلف (صفر، 10، 25 و 35 درصد آلودگی) با یکدیگر مخلوط شدند. سپس بذر 6 گیاه مختلف (جو، چمن، یونجه، شاهدانه، گاودانه و کاملینا) در 3 تکرار در گلدان‌ها کشت شدند. پس از اتمام دوره‌ کشت، گیاهان برداشت و برخی ویژگی‌های فیزیولوژیک گیاهان و همچنین درصد کاهش هیدروکربن‌های نفتی در خاک اندازه‌گیری شدند. به‌طورکلی رشد اکثر گیاهان روند کاهشی متناسب با افزایش میزان آلودگی خاک از خود نشان داد، اما این کاهش رشد در گیاهان مختلف، متفاوت بود. گیاه کاملینا اگرچه قادر به جوانه‌زنی در خاک‌های آلوده به هیدروکربن‌های نفتی بود اما وجود این آلاینده‌ها در خاک مانع از رشد و عملکرد مناسب گیاه شد، بنابراین استفاده از آن در مطالعات بعدی گیاه‌پالایی خاک‌های آلوده به نفت، توصیه نمی‌شود. طبق نتایج مقایسه میانگین-ها، درصد هیدروکربن‌های نفتی در تیمارهای کشت شده، تفاوت آماری معنی‌داری با تیمار بدون کشت نداشت و از آنجایی که کل خاک‌های مورد بررسی استریل نشده و دارای باکتری‌های بومی بودند پس احتمالاً تجزیه و حذف هیدروکربن‌ها توسط باکتری‌های بومی موجود در خاک صورت گرفته است. از این‌رو احتمال می‌رود که تقویت باکتری‌های بومی در این گونه خاک‌ها باعث افزایش تجزیه و تخریب هیدروکربن‌های نفتی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the Efficiency of Different Plants to Remove Total Petroleum Hydrocarbons from Oilfield Soils

نویسندگان [English]

  • Naghshineh Yari Nilavareh 1
  • Ali Beheshti Ale Agha 2
  • Mahin Karami 3
  • Marzieh Sadeghi 4
1 MSc in Soil Fertility and Biotechnology, Department of Soil Science, Razi University, Kermanshah, Iran
2 Associate Professor, Department of Soil Science, Razi University, Kermanshah, Iran
3 Ph.D. in Soil Sciences, Department of Soil Science, Isfahan University of Technology, Isfahan, Iran
4 Assistant Professor, Department of Analytical Chemistry, Razi University, Kermanshah, Iran.
چکیده [English]

Introduction
Crude oil is a complex combination of many hydrocarbon and non-hydrocarbon compounds, including heavy metals, which affect the physical and chemical properties of the soil, cause the soil particles to stick and connect and then cause the soil to become stiff and impenetrable. Contamination of soil with petroleum hydrocarbons is a significant environmental problem, which has received remarkable attention in recent decades. Petroleum hydrocarbons are resistant and hazardous pollutants. Some petroleum hydrocarbons such as benzene are mutagenic and carcinogenic materials for humans. There are many physical and chemical methods to remediate oil-contaminated soils. Phytoremediation is a relatively new technology for refining contaminated soils in which resistant plants are used to remove or reduce the concentration of inorganic, radioactive, and organic pollutants, especially petroleum compounds, from the environment.
Materials and Methods
Sufficient amounts of about 50 kg of soil contaminated with petroleum hydrocarbons were collected from regions (0-30 cm soil depth) adjacent to the oil wells west of Kermanshah province. Uncontaminated soil samples were also taken from sites at the lowest distance to the contaminated sites. The aim of this study was to compare the efficiency of different plants to remove total petroleum hydrocarbons from oilfield soils. In this study, after determining the total amount of petroleum hydrocarbons, the contaminated and uncontaminated soils were mixed in 4 treatments with different weight ratios (0, 10, 25, and 35%). This experiment was established as completely randomized design with 3 replications for 6 different plants (Barley, Grass, Alfalfa, Hemp, Camelina, and Vicia ervilia). One treatment without plant was considered to remove soil matrix effects on petroleum hydrocarbon concentrations. Plants were harvested at the end of their growing season (90-120 days). Soils and plant samples from the experimental pots were analyzed for their important properties (including some physiological characteristics of the plants, as well as the percentage of reduced petroleum hydrocarbons in the soils). The gravimetric method was used to determine the concentration of petroleum hydrocarbons in the soil. After measuring the properties of the soil and plant, the normality of the data was checked by the Anderson–Darling test, and the homogeneity of the variance of the treatments was checked by using Levene's test. Analysis of data variance was done using ANOVA and average data comparison was done using LSD test at 5 and 1 percent probability levels (SAS 9.4 and SPSS 26).
Results and Discussion
In general, the growth of most plants showed a decreasing trend in proportion to the increase in soil pollution levels. However, the growth decline rates of different plants were not similar. Camelina was very sensitive to oil pollution and the plant could not tolerate pollution even at 10% level. After camelina, alfalfa was highly sensitive to oil pollution. The highest dry weight of the aerial parts of the hemp plant in the soil without oil contamination was observed at the rate of 111.22 grams in the pot. The leaf area of all studied plants in contaminated soils decreased compared to the control treatment (without contamination) so with the increase in the percentage of contamination, the leaf area of the plants was significantly reduced. The highest amount of leaf surface was observed in unpolluted soil and in the hemp plant. Except for the Camelina plant, which was completely destroyed at different levels of pollution, the rest of the plants showed a noticeable decrease in growth. The total petroleum hydrocarbons in soil were measured again 120 days after the start of cultivation, and its difference with the total amount of petroleum hydrocarbons at the beginning of cultivation was determined as the reduction of petroleum hydrocarbons and reported as a percentage. According to the mean comparison results, the percentage of reduced petroleum hydrocarbons was not significantly different among cultivated and non-cultivated treatments, although, it was significantly affected by soil pollution levels. Since all the studied soils contained natural bacteria and were not sterilized, the eliminated part of petroleum hydrocarbons is probably decomposed and removed by native bacteria in the soils. Therefore, the strengthening of native bacteria in these soils may increase the decomposition and degradation of petroleum hydrocarbons.
Conclusion
The results of this research show that the presence of petroleum hydrocarbons in the soil caused a decrease in growth and other physiological characteristics in all studied plants. Although the Camelina was able to germinate in soils contaminated with petroleum hydrocarbons, the presence of these pollutants in the soil prevented the optimum growth of the plant, so its use in subsequent studies of phytoremediation of oil-contaminated soils, was not recommended. The results showed that there is no statistically significant difference between cultivated and non-cultivated treatments at different pollution levels, and the reduction of the total petroleum hydrocarbons in the soil was probably done by native microorganisms in the soil. It is recommended to take into consideration the efficiency of the plant species used, the type of polluting hydrocarbons, and the duration of contamination in future research to obtain better results.

کلیدواژه‌ها [English]

  • Alfalfa
  • Bioremediation
  • Grass
  • Oil
  • Phytoremediation
  • Pollutants
  1. Abedi-Koupa, J., Ezzatian, R., Vossoughi-Shavari, M., Yaghmaei, S., & Borghei, M. (2007). The effects of microbial population on phytoremediation of petroleum contaminated soils using tall fescue. International Journal of Agriculture and Biology 9: 242-246. https://doi.org/1560-8530/2007/09-2-242-246.
  2. Adavi, Z. (2011). Phytoremediation of oil contaminated soils by Bermudagrass varieties, Journal of Environmental Science and Engineering 48: 13-19. (In Persian with English abstract)
  3. Akaninwor, J.O., Ayeleso, A.O., & Monago, C.C. (2007). Effect of different concentrations of crude oil (Bonny light) on major food reserves in guinea corn during germination and growth. Journal of Science Research and Essay 2(4): 127-131.
  4. Anigboro, A., & Tonukari, N. (2008). Effect of crude oil on invertase and amylase activities in cassava leaf extract and germinating cowpea seedlings. Asian Journal of Biological Science 1: 56-60.
  5. Aprill, W., & Sims, R.C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soils. Chemosphere 20: 253-265. https://doi.org/10.1016/0045-6535(90)90100-8.
  6. Baek, K.H., Kim, H.S., Oh, H.M., & Yoon, B.K. (2004). Effects of crude oil, oil components, and bioremediation on plant growth. Journal of Environmental Science and Health, Part A. 39(9): 2465-2472. https://doi.org/10.1081/ESE-200026309.
  7. Besalatpour, A.A., Hajabbasi, M.A., Khoshgoftarmanesh, A.M., & Afyuni, M. (2008). Remediation of petroleum contaminated soils around the Tehran oil refinery using Phytostimulation method. Journal of Agriculture Resources 15(4): 22-35. (In Persian with English abstract)
  8. Bint, P., & Portal, J.M. (2000). Dissipation of 3-6 ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Journal of Soil Biology and Biochemistry 32: 2077-2077. https://doi.org/10.1016/S0038-0717(00)00100-0.
  9. Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., & Clark, F.E. (1965). Methods of soil analysis: Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison Inc., Madison, Wisconsin. p. 1569
  10. Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total. In: Methods of soil analysis, Part 2. American Society of Agronomy, Madison, Wisconsin. pp: 595-624.
  11. Budhadev, B., Sabitry, B., & Hari, P. (2012). Crude oil contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water, Air, and Soil Pollution 233: 3373-3383. https://doi.org/10.1007/s11270-012-1116-6.
  12. Caudle, K.L., & Maricle, B.R. (2014). Physiological relationship between oil tolerance and flooding tolerance in marsh plants. Environmental and Experimental Botany 107: 7–14. https://doi.org/10.1016/j.envexpbot.2014.05.003.
  13. Cedric, K., Pettersson, K., Leeds, P., Harrison, R.L., & Ledin, S. (2007). Root establishment of perennial ryegrass ( perenne) in diesel contaminated subsurface soil layers. Environmental Pollution 145: 68-74. https://doi.org/10.1016/j.envpol.2006.03.039.
  14. Chaineau, C.H., Morel, J.L., & Oudot, J. (1997). Phytotoxicity and plant uptake of fuel oil hydrocarbons. Environmental Pollution 26: 1478-1483. https://doi.org/10.1016/j.envpol.2006.03.039.
  15. Chupakhina, G.N., & Maslennikov, P.V. (2004). Plant adaptation to oil stress. Russian Journal of Ecology 35: 290-295. https://doi.org/10.1023/B:RUSE.0000040681.75339.59.
  16. Cupers, C., Pancras, T., Grotenhuis, T., & Rulkens, W. (2002). The estimation of PAH bioavailability in contaminated sediments using hydroxypropy1-B-cylodextrin and triton x-100 extraction techniques. Chemosphere 46: 1235-1245. https://doi.org/10.1016/S0045-6535(01)00199-0.
  17. Dashti, N., Khanafer, M., El-Nemr, I., & Sorkhoh, N. (2009). The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere 74: 1354-1359. https://doi.org/10.1016/j.chemosphere.2008.11.028.
  18. Dewis, J., & Freitas, F. (1984). Physical and chemical methods of soil and water Analysis. FAO soil bulletin 10, Oxford and 1BH publishing CO. PVT. LTD. New Delhi Bombay Calcutta.
  19. Diaz-Perez, J.C., Shckel, K.L., & Sutter, E.G. (2006). Relative water content. Annals of Botany 97: 85-96.
  20. Dorazio, V., Ghanem, A., & Senesi, N. (2013). Phytoremediation of pyrene contaminated soils by different plant species. Journal of Clean (Soil, Air, Water) 41(4): 377-382. https://doi.org/10.1002/clen.201100653.
  21. Escalante, E.E., Gallegos-Martinez, M.E., Favela-Torres, E., & Gutierrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413. https://doi.org/10.1016/j.chemosphere.2004.10.034.
  22. Farzami Spehr, M., Nowruzi Haji Abdal, F., & Farj Zadeh, M.A. (2013). Phytoremediation ability of Polypogon monspeliensis in refining oil contaminated soils. Journal of Plant Science Research 29(1): 75-86. (In Persian with English abstract)
  23. García-Sánchez, M., Košnář, Z., Mercl, F., Aranda, E., & Tlustoš, P. (2018). A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial- assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety 147: 165–174. https://doi.org/10.1016/j.ecoenv.2017.08.012.
  24. Gaskin, S.E., & Bentham, R.H. (2010). Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Science of the Total Environment 408: 3683-3688. https://doi.org/10.1016/j.scitotenv.2010.05.004.
  25. Huang, X.D., Alawi, Y.E., Gurska, J., Glick, B.R., & Greenberg, B.M. (2005). A multiprocessor phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soil. Microchemical Journal 81: 139-147. https://doi.org/10.1016/j.microc.2005.01.009.
  26. Hutchinson, S.L., Banks, M.K., & Schwab, A.P. (2001). Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. Journal of Environmental Quality 30: 395-403. https://doi.org/10.2134/jeq2001.302395x.
  27. Jussila, M.M. (2006). Molecular biomonitoring during rhizoremediation of oil contaminated soil. Ph.D thesis. Department of applied chemistry and microbiology division of microbiology. University of Helsinki. Finland.
  28. Kaimi, , Mukaidani, T., & Tamaki, M. (2007). Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Journal of Plant Production Science 10(2): 211-218. https://doi.org/10.1626/pps.10.211.
  29. Kaimi, E., Mukaidani, T., Miyoshi, S., & Tamaki, M. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environmental and Experimental Botany 55: 110-119. https://doi.org/10.1016/j.envexpbot.2004.10.005.
  30. Kamath, R., Rentz, J.A., Schnoor, J.L., & Alvarez, P.J.J. (2004). Phytoremediation of hydrocarbon-contaminated soils: principles and application. Chapter 16. Petroleum Biotechnology: Developments and Perspectives. Studies in Surface Science and Catalysis 151: 447-478. https://doi.org/10.1016/S0167-2991(04)80157-5.
  31. Lee, S.H., Lee, W.S., Lee, C.H., & Kim, J.G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials 153: 892-898. https://doi.org/10.1016/j.jhazmat.2007.09.041.
  32. Lindsay, W.L., & Norvell, W.A. (1978). Development of a DTPA Soil test for zinc, iron, manganese, and copper. Soil Science Society American Journal 42: 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
  33. Luepromchai, E., Lertthamrongsak, W., Pinphanichakarn, P., & Thaniyavarn, S. (2007). Biodegradation of PAHs in petroleum-contaminated soil using tamarind leaves as microbial inoculums. Biodegradation 29: 515-527.
  34. Martin, B.C., George, S.J., & Price, C.A. (2014). Therole of root exuded low molecular weight organicanions in facilitating petroleum hydrocarbondegradation: current knowledge and futureScience of the Total Environmental 472: 642–653. https://doi.org/10.1016/j.scitotenv.2013.11.050.
  35. Merkel, N., Schultze-Kraft, R., & Infant, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Journal of Water, Air and Soil Pollution 165: 195-209. https://doi.org/10.1007/s11270-005-4979-y.
  36. Moubasher, H.A., Hegazy, A.K., Mohamed, N.H.,Moustafa, Y.M., Kabiel, H.F., & Hamad, A.A. (2015). Phytoremediation of soils polluted withcrude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration and Biodegradation 98: 113-120. https://doi.org/10.1016/j.ibiod.2014.11.019.
  37. Nie, M., Zhang, X., Wang, J., Jiang, L., Yang, J., Quan, Z., Cui, Q., Fang, C., & Li, B. (2009). Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biology and Biochemistry 41: 2535-2542. https://doi.org/10.1016/j.soilbio.2009.09.012.
  38. Olsen, S.R., & Sommers, L.E. (1982). In: methods of soil analysis, Part2. American Society of Agronomy, Madison, Wisconsin. pp: 403-431.
  39. Omosun, G., Markson, A., & Mbanasor, O. (2008). Growth and anatomy Amaranthus hybridus as affected different crude oil concentration. American-Eurasian Journal of Scientific Research 3(1): 70-74.
  40. Oster, J.D., & Garrison, S. (1980). The Gapon coefficient and the exchangeable sodium percentage sodium adsorption ratio relation. Soil Science Society American Journal 44: 258-260. https://doi.org/10.2136/sssaj1980.03615995004400020011x.
  41. Peng, S., Zhou, Q., Cai, Z., & Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis jalapa in greenhouse plot experiment. Journal of Hazardous Materials 168: 1490-1496. https://doi.org/10.1016/j.jhazmat.2009.03.036.
  42. Rajaei, S., Raiesi, F., & Seyedi, S. (2012). The Bioremediation of an aged petroleum contaminated soil using bioaugmentation and phytoremediation techniques. Water and Soil 26(4): 908-921. (In Persian with English abstract). https://org/10.22067/jsw.v0i0.15295.
  43. Ramirez, M.E., Zapien, B., Zegrra, H.G., Rojas, N.G., & Fernandez, L.C. (2009). Assessment of hydrocarbon biodegradability in clayed and weathered polluted soils. Journal International Biodeterioration and Biodegradation 63: 347-353. https://doi.org/10.1016/j.ibiod.2008.11.010.
  44. Rhoades, J.D. (1982). Soluble salts. In: Page A.L., Miller R.H., and Keeney D.R. (eds.), Methods of Soil Analysis. Part 2, Chemical and Mineralogical Properties (2nd edition). Agronomy series No.9. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, USA, pp. 167-179.
  45. Shekoohiyan, S., Moussavi, G., & Naddafi, K. (2016).The peroxidase- mediated biodegradation ofpetroleum hydrocarbons in a H2O2-induced SBR using in-situ production of peroxidase: biodegradation experiments and bacterial Journal of Hazardous Materials 313: 170–178. https://doi.org/10.1016/j.jhazmat.2016.03.081.
  46. Scott, S. (2003). Biodegradation and toxicity of total petroleum hydrocarbon leachate from land treatment units. Department of Engineering. California Polytechnic State University.
  47. Shahriari, M.H., Savaghebi Firrozabadi, G., Minai-Tehrani, D., & Padidaran, M. (2006). The effect of mixed plants alfalfa (Medicago sativa) and fescue (Festuca arundinacea) on the phytoremediation of light crude oil in soil. Environmental Sciences 4(13): 33-40. (In Persian with English abstract)
  48. Shim, H., Chauhan, S., Ryoo, D., Bowers, K., Thomas, S.M., & Burken, J.G. (2000). Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Applied and Environmental Microbiology 66(11): 4673-4678. https://doi.org/10.1128/AEM.66.11.4673-4678.2000
  49. Smits, P.E. (2005). Phytoremediation. Annual Reviews of Plant Biology 56: 15-39.
  50. Victor, J., & Sadiq, A. (2002). Effects of spent engine oil on the growth parameters chlorophyll and protein level of Amaranthus hybridus Environmentalist 22: 23-28. https://doi.org/10.1023/A:1014515924037.
  51. Villalobos, M., Avila-Forcada, A.P., & Gutierrez-Ruiz, M.E. (2008). An improved gravimetric method to determine total petroleum hydrocarbons in contaminated soils. Journal of Water, Air and Soil Pollution 194: 151-161. https://doi.org/10.1007/s11270-008-9704-1.
  52. Walkley, A., & Black, I.A. (1974). An examination of the digestion method for determining organic carbon in soils: Effect of variations in digestion conditions and of in organic soil constituents. Soil Science 63: 251-263.
  53. Xu, S.Y., Chen, Y.X., Wu, W.X., Wang, K.X., Lin, Q., & Liang, X.Q. (2005). Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Science of the Total Environment 1-10. https://doi.org/10.1016/j.scitotenv.2005.05.030.

 

CAPTCHA Image