دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی علوم خاک،گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

2 گروه علوم خاک، دانشکده کشاورزی و منابع طبیعی اصفهان، واحد خوراسگان، دانشگاه آزاد اسلامی، اصفهان، ایران;

3 مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان

چکیده

تحلیل تناسب اراضی با استفاده از مجموعه متنوعی از عوامل موثر بر تولید کمی و کیفی محصولات و بررسی پیچدگی­های روابط آن­ها باهم، و همچنین نقشه­برداری کاربری اراضی، از مفیدترین کاربردهای سامانه اطلاعات جغرافیایی وکاربرد مدل­های تصمیم­گیری چندمعیاره در مدیریت منابع زمین است. در پژوهش حاضر، ارزیابی کیفی تناسب اراضی با استفاده از مدل‌های فرآیند تحلیل سلسله مراتبی فازی و پارامتریک برای محصول گندم آبی و یونجه مورد بررسی قرار گرفت. مشخصات خاک، شرایط اقلیمی، توپوگرافی و دسترسی به آب، جاده و مراکز جمعیتی، بر اساس چارچوب سازمان خواربار جهانی و کشاورزی و نظرات کارشناسان انتخاب شد. تابع درونیابی برای ویژگی­های کیفی و کمی موردنظر، استفاده شد وارزیابی بر اساس مدل­های پارامتریک و فرآیند تحلیل سلسله مراتبی فازی انجام شد. بر اساس مدل پارامتریک، مقادیر شاخص‌های زمین برای گندم و یونجه از 50 درصد در برخی نقاط تا 78 درصد در منطقه مورد مطالعه متغیر است،که دشت را به طبقات مناسب  (S2)و خیلی مناسب (S1) طبقه‌بندی می‌کند. مقادیر ترجیحی فرآیند تحلیل سلسله مراتبی فازی برای کشت گندم و یونجه به ترتیب در منطقه مورد مطالعه از 25 تا 73 درصد و 24 تا 50 درصد می­باشد که به عنوان متوسط تا خیلی زیاد طبقه‌بندی می­شود. ضریب کاپا کوهن بین شاخص­های پارامتری زمین و مقادیر ترجیحی فرآیند تحلیل سلسله مراتبی فازی با عملکرد گندم و یونجه مشاهده شده، به ترتیب بین 03/0 تا 237/0 و 001/0 تا 04/0 متغیر است که اعتبار هر دو مدل در برآورد تناسب اراضی برای تولید محصول در منطقه مورد مطالعه را تایید می­کند. نتایج مطالعه حاضر نشان می­دهد که فرآیند تحلیل سلسله مراتبی فازی یک استراتژی موثر برای افزایش دقت وزنی معیارهای موثر بر تحلیل تناسب زمین نسبت به روش سنتی برای شناسایی محدودیت­های کشت محصولات می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Application of Multi-Criteria Decision-Making Model in Land Suitability Assessment

نویسندگان [English]

  • Sahar Akhavan 1
  • Ahmad Jalalian 2
  • N. Toomanian 3
  • N. Honarjoo 2

1 Department of Soil Science, College of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran;

2 Department of Soil Science, College of Agriculture and Natural Resources Isfahan, (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

3 Agriculture and Natural Resource Research Center of Esfahan

چکیده [English]

Introduction
Land suitability analysis and land use mapping are one of the most practical applications of Geographic Information Systems in land resource management. Complexities in soil have briefly limited studies on how it functions (Karlen, 2008). There are many methods from different centers including food and agriculture organizations (FAO), to evaluate land suitability. These methods are based on the characteristics of the land and the needs of the plant. Soil quality indicators are a set of measurable soil characteristics that affect crop production or the environment and are sensitive to land use change, management or conservation operations. (Brejda, 2000; Aparico and Costa, 2007). As a result, there is a global need for environmental issues, improvement of soil quality assessment methods for sustainable agricultural development and recognition of the sustainability of soil management and land use systems. Until now, various methods have been used to collect data, measure and evaluate soil quality, and laboratory analysis is the most common method, which has the advantage of being easy to use and characterizing and the quantitative characteristics of the test on different soil quality indicators (and Wang, 1998 Gong). Criteria for soil quality indicators should be a set of physical, chemical, biological characteristics or a combination of them (Doran and Parkin, 1997).
Materials and Methods
In the present study, the qualitative assessment of land suitability was investigated using fuzzy and parametric hierarchical analysis process models for the irrigated wheat and alfalfa crops. Soil characteristics, climatic conditions, topography and accessibility were selected based on the Food and Agriculture Organization framework and expert opinions. The interpolation function was used to plot values to points in terms of quality/ terrain characteristics for the type of operation and the evaluation was performed based on parametric and fuzzy analytical hierarchy process models. The process of evaluation is based on the FAO qualitative land evaluation system (FAO 1976a, b, 1983, 1985), which compares climatic conditions and land qualities/characteristics including topography, erosion hazard, wetness, soil physical properties, soil fertility, and chemical properties, soil salinity and alkalinity with each specific crop requirements developed by Sys et al. (1991a, b, 1993). Based on morphological and physical/chemical properties of soil profiles some 10 land units were identified in the study area.Climate data related to different stages of wheat growth were taken from ten years of meteorological data of the region (2007-2017) and the climatic requirements of the crop were extracted from the Table developed by (Sys et al., 1993). An interpolation technique using the ArcGIS ver 10.3 helped in managing the spatial data and visualizing the land index results in both models for preparing the final land suitability evaluation maps. The FAHP method and (Chang, 1996) method, which is a very simple method for generalizing the hierarchical analysis process to the fuzzy space, was used in order to assign weight to the criteria through. This method is based on computational mean of the experts’ opinion and the time normalization method and the use of triangular fuzzy numbers. A pairwise comparison matrix has been made fuzzy based on the experts’ opinion and using the triangular fuzzy numb. After calculating the weights of the criteria in the present research through the FAHP method, the entire criteria maps were overlaid through the use of the GIS function and the suitability maps were prepared for the main criteria. The main suitability maps went through weight overlaying eventually and the final map of suitability for wheat and alfalfa cultivation was produced.
 Results and Discussion
The results of this study showed that the FAHP was an efficient strategy to increase the accuracy of weight allocation to criteria that affect the analysis of ground fit. The inability of conventional decision-making methods to account for uncertainty paves the way for the use of fuzzy decision-making methods. One of the drawbacks of the AHP is its inability to account for the uncertainty of judgments in pairwise comparison matrices. This defect is compensated by the FAHP method. Instead of considering a specific number in a pairwise comparison, a range of values in the FAHP is used for uncertainty for decision makers. The present research method can be useful for prioritizing lands, improving exploitation, conserving resources, and creating sustainable management. The results of this study, considering the main criteria of cultivation in the study area and the opinion of domestic experts, can provide useful insights into choosing the appropriate cultivation pattern in the region. The use of different fuzzy AHP methods as well as comparing the results of different fuzzy AHP methods in future research is recommended.

کلیدواژه‌ها [English]

  • Fuzzy
  • Geographic information systems
  • Land suitability
  • Parametric
  1. Ayubi, , & Jalalian, A. (2014). Land evaluation (agricultural uses and natural resources). Publications of Isfahan University of Technology. Fifth Edition. (In Persian)
  2. Brahma, B., Pathak, K., Lal, R., Kurmi, B., Das, M., Nath, P.C.,& Das, A.K. (2018). Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degradation & Development 29(1): 15-25. https://doi.org/10.1002/ldr.2816.
  3. Chang, D.Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research 95(3): 649-655.‏ https://doi.org/10.1016/0377-2217(95)00300-2.
  4. Chen, Y., Yu, J., & Khan, S. (2010). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software 25(12): 1582-1591.‏ https://doi.org/10.1016/j.envsoft.2010.06.001.
  5. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1): 37-46. ‏https://doi.org/10.1177/001316446002000104.
  6. Dent, D., & Young, A. (1981). Book: Soil survey and land evaluation. George Allen & Unwin.
  7. (1976a). A framework for land evaluation. Food and Agricultural Organization of the Unite Nations, Rome.
  8. (1976b). A framework for land evaluation. FAO Soil Bulletin 32, Rome.
  9. FAO. (1983). Guidelines: land evaluation for rainfed agriculture. FAO Soils Bulletin, No. 52, FAO, Rome.
  10. (1985). Guideline: land evaluation for irrigated agriculture. FAO Soils Bulletin, No. 55. Rome.
  11. (1993). Guideline for Land use planning. FAO Development Series No: 21, Rome, p 96.
  12. Fekadu, Dadi, A., Miller, E.R., & Mwanri, L. (2020). Antenatal depression and its association with adverse birth outcomes in low and middle-income countries: a systematic review and meta-analysis. PloS One 15(1): e0227323. ‏https://doi.org/10.1371/journal.pone.0227323.
  13. Gee, G.W., & Bauder, J.W. (1986). Particle-size analaysis In: A. Klute, Methods of soil analysis, Part 1-Physical and mineralogical methods, 2nd edition, Soil Sci. Soc.Am. Madison, Wiscon. USA. 383-409.
  14. Jiang, H., & Eastman, J.R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science 14(2): 173-184.‏ https://www.tandfonline.com/doi/abs/10.1080/136588100240903.
  15. Karlen, D.L. (2008). Sustainability indicators: a scientific assessment. Journal Environment Quality 37: 1663-1663. https://doi.org/10.2134/jeq2008.0005br.
  16. Kihoro, J., Bosco, N.J., & Murage, H. (2013). Suitability analysis for rice growing sites using a multicriteria evaluation and GIS approach in great Mwea region, Kenya. SpringerPlus 2(1): 1-9. Available at https://link.springer.com/article/10.1186/2193-1801-2-265.
  17. Mert, M., Bölük, G., & Çağlar, A.E. (2019). Interrelationships among foreign direct investments, renewable energy, and CO2 emissions for different European country groups: a panel ARDL approach. Environmental Science and Pollution Research 26(21): 21495-21510.‏ https://doi.org/10.1007/s11356-019-05415-4.
  18. Musavi, M., & Bozorgi-Amiri, A. (2017). A multi-objective sustainable hub location-scheduling problem for perishable food supply chain. Computers & Industrial Engineering113: 766-778.‏ https://doi.org/10.1016/j.cie.2017.07.039.
  19. Pilevar, A.R., Matinfar, H.R., Sohrabi, A., & Sarmadian, F. (2020). Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecological Indicators110: 105887.‏ https://doi.org/10.1016/j.ecolind.2019.105887.
  20. Reak, Kalra, Y., Vaughan, B., & Wolf, A.M. (1990). Soil analysis handbook of refrence methods. CRC press. 1st Edit, pp. 264.
  21. Reshmidevi, T.V., Eldho, T.I., & Jana, R. (2009). A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agricultural Systems 101(1-2): 101-109.‏ https://doi.org/10.1016/j.agsy.2009.04.001.
  22. Saaty, T. (1980). The analytic hierarchyp: planning, priority setting, resource allocation (Decision Making Series). New York, McGraw-Hill. http://citeseerx.ist.psu.edu/ doi=10.1.1.410.5705.
  23. Sys, C., Van Ranst, E., & Debaveye, IJ. (1991a). Land evaluation. Part I: principles in land evaluation and crop production calculations. General Administration for Development Cooperation, Agricultural Publication-No. 7, Brussels, Belgium, p 274.
  24. Sys, C., Van Ranst, E., & Debaveye, IJ. (1991b). Land evaluation. Part II: methods in land evaluation. General Administration for Development Cooperation, Agricultural Publication-No. 7, Brussels, Belgium, p 247.
  25. Sys, C., Van Ranst, E., Debaveye, IJ., & Beernaert, F. (1993). Land evaluation. Part III: crop requirements. General Administration for Development Cooperation, Agricultural Publication-No. 7, Brussels, Belgium, p 199.
  26. Triantafilis, J., Odeh, I.O.A., & McBratney, A.B. (2001). Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Science Society of America Journal 65(3): 869-878.‏ https://doi.org/10.2136/sssaj2001.653869x.
  27. Yu, J., Chen, Y., & Wu, J.P. (2009). Cellular automata and GIS based land use suitability simulation for irrigated agriculture. In 18th World IMACS/MODSIM Congress, Cairns, Australia (pp. 13-17). Retrieved from https://mssanz.org.au/modsim09/I8/yu_j.pdf.
  28. Yu, J., Chen, Y., Wu, J., & Khan, S. (2011). Cellular automata-based spatial multi-criteria land suitability simulation for irrigated agriculture. International Journal of Geographical Information Science 25(1): 131-148.‏ https://doi.org/10.1080/13658811003785571.

 

CAPTCHA Image