اثر آب شور مغناطیسی‌شده بر عملکرد و اجزای عملکرد توت‌فرنگی (Fragaria ananassa cv. Silva)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 دانشجوی دکتری، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانش‌آموخته کارشناسی ارشد، گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

هدف از این پژوهش تأثیر تنش شوری تحت تأثیر میدان مغناطیسی بر عملکرد و اجزای عملکرد گیاه توت‌فرنگی می‌باشد. آزمایش به‌صورت فاکتوریل در قالب طرح بلوک­های کامل تصادفی با سه تکرار در سال­های 1400 و 1401 در شهرستان نکا انجام شد. تیمار شاهد شامل آبیاری کامل در تمام مراحل رشد گیاه و با آب معمولی (غیرمغناطیسی) بود. تیمارها شامل نوع آب آبیاری در دو سطح (آب غیرمغناطیسی (W1) و آب مغناطیسی (W2)) و شوری آب در سه سطح (86/0 دسی‌زیمنس بر متر (S1)، 20 میلی‌مولار کلریدسدیم (S2) و 40 میلی­مولار کلریدسدیم (S3) بود. نتایج تجزیه واریانس نشان داد که اثر نوع آب آبیاری و سطوح مختلف شوری آب بر طول، قطر، تعداد میوه در هر بوته، وزن میوه، زیست‌توده و عملکرد بوته در سطح احتمال یک درصد معنی­دار شد. به­طور متوسط طی دو سال کشت توت‌فرنگی با اعمال میدان مغناطیسی، طول، قطر، تعداد میوه در هر بوته، وزن میوه، زیست‌توده و عملکرد بوته به­ترتیب 76/9، 14/14، 05/23، 6/27، 08/27 و 36/28 درصد افزایش نشان داد. با افزایش 20 و 40 میلی‌مولار کلریدسدیم، خصوصیات فیزیکی میوه توت‌فرنگی و عملکرد کاهش یافت. بیشترین کاهش مربوط به تعداد میوه در هر بوته در سطح شوری 40 میلی‌مولار کلریدسدیم بود که نسبت به تیمار شاهد 69/56 درصد کاهش یافت. نتیجه نهایی این پژوهش نشان داد که با استفاده از فن­آوری آب مغناطیسی می­توان از سطوح کم شوری استفاده نمود و مقدار عملکرد توت‌فرنگی را بهبود بخشید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Magnetized Saline Water on Yield and Yield Components of Strawberry (Fragaria ananassa cv. Silva)

نویسندگان [English]

  • M. Khoshravesh 1
  • M. Pourgholam-Amiji 2
  • F. Emami Ghara 3
1 Associate Professor, Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 MS.c. Graduated, Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

Introduction
Considering the value of water in agriculture and the limitation of this important and vital resource and the existence of intermittent droughts in the country, saving in consumption and optimal use of available water seems necessary. Today, utilizing saltwater is considered one of the practical and effective approaches to minimize water consumption while achieving acceptable economic performance. Given the scarcity of freshwater sources, the utilization of unconventional water for strawberry cultivation holds significant economic importance. Through the application of innovative technologies, such as magnetic technology, the modification of these water sources can lead to increased quantitative and qualitative yields of agricultural products. Salinity stress, which alters the water and nutrient absorption patterns, directly impacts the plant's yield in terms of both quantity and quality. Strawberry is an important commercial product, and the quantitative and qualitative increase of its yield is emphasized from different aspects. The purpose of this research is to the effect of salinity stress under the influence of a magnetic field on the yield and yield components of the strawberry plant.
Materials and Methods
The purpose of this research was to investigate the effect of salinity stress under the influence of magnetic fields on the yield and yield components of strawberry plants. The factorial experiment was conducted in the form of a randomized complete block design with three replications in 2021 and 2022 in Neka city. The control treatment included full irrigation in all stages of plant growth with normal water (non-magnetic). The treatments include the type of irrigation water at two levels (Non-Magnetic Water (W1) and Magnetic Water (W2)), and water salinity was at three levels (0.86 dS/m (S1), 20 mM sodium chloride (S2), and 40 mM sodium chloride (S3). The strawberry plant of the Silva cultivar was cultivated in 3 x 4-meter plots with a row spacing of 40 cm and a between the spacing of 40 cm. Magnetization of irrigation water was created by passing water through a permanent magnet with a magnetic field intensity of 0.3 Tesla. The salt used for salinity stress was laboratory sodium chloride. The used irrigation method was drip (tape), and the amount of irrigation water and irrigation cycle was done according to the needs of the plant. Soil moisture monitoring was used to calculate the amount of applied water.
Results and Discussion
The results of analysis of variance showed that the effect of the irrigation water type and different levels of water salinity on the length, diameter, number of fruits per plant, fruit weight, biomass and plant yield was significant at the 1% probability level. The effect of water salinity on the number of fruits per plant was significant at the 1% probability level and on the fruit length and fruit diameter at the 5% probability level. The interaction effect of irrigation water type and water salinity was also significant at the probability level of 1%. On average, during two years of strawberry cultivation with the application of a magnetic field, the length, diameter, number of fruits per plant, fruit weight, biomass, and plant yield were increased by 9.76, 14.14, 23.05, 27.60, 27.08, and 28.36% respectively. The introduction of 20 and 40 mM sodium chloride resulted in a decrease in the physical characteristics of strawberry fruit and overall yield. The most significant reduction was observed in the number of fruits per plant at the salinity level of 40 mM sodium chloride, exhibiting a 56.69% decrease compared to the control treatment.
Conclusion
The growth of population and expansion of agriculture on one hand and the demand for more harvesting from limited water resources on the other hand, make it necessary to increase water productivity. Lack of water and competition for water resources has caused research to be done in order to reduce water consumption and preserve its resources. Therefore, searching for ways to reduce consumption and preserve water resources is of great importance. One of these methods is using magnetic water. The results of the research showed that the use of magnetic water technology caused a significant increase in the yield and yield components of strawberries compared to the control treatment. In addition, the salinity level of irrigation water had a significant impact on the yield and yield components of strawberries, with the highest yield observed in the treatment without salinity stress when using magnetic water technology. The findings of this study indicate that the application of magnetic water technology can enable the use of low salinity levels and lead to improved strawberry yield.
 

کلیدواژه‌ها [English]

  • Bush yield
  • Growth parameters
  • Magnetized water
  • Water salinity
  1. Abdwl Latif, A.A., & Chaoxing, H. (2011). Effect of Arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and yield of tomato grown under salinity stress. Scientia Horticulturae, 127, 228-233. https://doi.org/10.1016/j.scienta.2010.09.020
  2. Ahmad, P., & Wani, M.R. (Eds.). (2013). Physiological mechanisms and adaptation strategies in plants under changing environment. Springer Science and Business Media, Vol. 2. Springer New York Heidelberg Dordrecht London. https://doi.org/10.1007/978-1-4614-8591-9
  3. Ahmadi, K., Ebadzadeh, H. R., Hatami, F., Mohammadnia Afrozi, Sh., Abbas Taleghani, R., Yari, Sh., & Kalantari, M. (2021). Agricultural statistics for the year 2019-2020. Publications of the Technology and Information and Communication Center of the Ministry of Jihad Agriculture, Volume 3: 164 pp. (In Persian with English abstract)
  4. Algozari, H., & Yao, A. (2006). Effect of the magnetizing of water and fertilizers on some chemical parameters of soil and growth of maize. M.Sc. Thesis. University of Baghdad, Baghdad, Iraq.
  5. Berkelaar, E., & Beverley, H. (2000). The relationship between morphology and cadmium accumulation in seedling of two durum wheat cultivars. Canadian Journal of Botany, 78, 381–387. https://doi.org/abs/10.1139/b00-015
  6. Biryukov, A.S., Gavrikov, V.F., Nikiforov, L.O., & Shcheglov, V.A. (2005). New physical methods of disinfection of water. Journal of Russian Laser Research 26(1): 1913-1925. https://doi.org/10.1007/s10946-005-0002-8
  7. Rashid, B., Husnain, T., & Riazuddin, S. (2014). Genomic approaches and abiotic stress tolerance in plants. In Emerging technologies and management of crop stress tolerance (pp. 1-37). Academic Press. https://doi.org/10.1016/B978-0-12-800876-8.00001-1
  8. Celik, O., Atak, C., & Rzakulieva, A. (2008). Stimulation of rapid regeneration by a magnetic field in paulownia node cultures. Journal of Central European Agriculture, 9(2), 297-303. https://doi.org/10.5513/jcea.v9i2.670
  9. Demkura, P.V., Abdala, G., Baldwin, I.T., & Ballare, C.L. (2010). Jasmonate dependent and independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiology, 152, 1084–1095. https://doi.org/1104/pp.109.148999
  10. Dolatshah, M., Rezaei Nejad, A., & Gholami, M. (2015). The effect of salinity stress on fruit yield and some physical and biochemical characteristics of strawberry (Fragaria ananassa) cv. “Camarosa”. Journal of Plant Production Technology 6(2): 127-138. (In Persian with English abstract)
  11. Dube, T., Shekede, M.D., & Massari, C. (2023). Remote sensing for water resources and environmental management. Remote Sensing, 15(1), 18. https://doi.org/10.3390/rs15010018
  12. Emadi, A.R., Nourani Azad, H., & Borzoo, A. (2009). Response of some physiological Traits to salinity stress in sugar beet (Beta vulgaris), Journal of Plant and Ecology, 5(19), 17-25. (In Persian with English abstract)
  13. Garriga, M., Munoz, C.A., Caligari, P.D., & Retamales, J.B. (2015). Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry ( chiloensis). Scientia Horticulturae, 195, 37–47. https://doi.org/10.1016/j.scienta.2015.08.036
  14. Gulen, H.E., Turhan, E., & Eris, A. (2006). Changes in peroxidase activities and soluble proteins in strawberry varieties under salt stress. Acta Physiologiae Plantarum, 28(2), 109-116. https://doi.org/10.1007/s11738-006-0037-7
  15. Habiby, H., Movahedi, A., Khoshravesh, M., & Saberi, A. (2019). The effect of magnetic water on the yield of corn and the adsorption of potassium, zinc and iron. Journal of Agricultural Engineering Soil Science and Agricultural Mechanization (Scientific Journal of Agriculture), 42(2), 131-142. (In Persian with English abstract). https://doi.org/ 22055/agen.2019.27239.1454
  16. Hassanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant responses to salt stress and role of exogenous protectants to mitigate salt stress damages. In: Ahmad P et al., (eds) Ecophysiology and responses of plants under salt stress. Springer. Science, pp 25-87. https://doi.org/10.1007/978-1-4614-4747-4_2
  17. Heidarpour, M., Khoshravesh, M., & Moshaveri, Y. (2016). Effect of magnetized saline water on soil and water amendment in trickle irrigation. Journal of Water and Soil Conservation, 23(2), 179-193. (In Persian with English abstract). https://doi.org/10.22069/jwfst.2016.3062
  18. Hohjo, M., Ganda, M., Maruo, T., Shinohara, Y., & Ito, T. (2001). Effect of NaCl application on growth, yield and fruit quality in NFT-tomato plants. Acta Horticulturae, 548, 469-475. https://doi.org/10.17660/ActaHortic. 548.55
  19. Hozayn, M., Ahmed, A.A., El-Saady, A.A., & Abd-Elmonem, A.A. (2019). Enhancement in germination, seedling attributes and yields of alfalfa (Medicago sativa) under salinity stress using static magnetic field treatments. Eurasian Journal of Biosciences, 13(1), 369-378.
  20. Idrees, M., Naeem, M., Khan, M.N., Aftab, T., & Khan, M.M.A. (2012). Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma, 249, 709-720. https://doi.org/10.1007/s00709-011-0314-1
  21. Jouyban, Z. (2012). The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences 2(1): 7-10.
  22. Kanayama, Y., & Kochetov, A. (2015). Abiotic Stress Biology in Horticultural Plants. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55251-2
  23. Karlidag, H., Yildirim, E., & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria×ananassa). Scientia Horticulture, 130, 133-140. https://doi.org/10.1016/j.scienta.2011.06.025
  24. Kaya, C., Higgs, D., & Kirnak, H. (2001). The effect of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition developmentary of spinach. Bulgar. Journal of Plant Physiology, 27, 47–59.
  25. Keutgen, A., & Pawelzik, E. (2008a). Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry, 111, 642-647. https://doi.org/10.1016/j.foodchem.2008.04.032
  26. Keutgen, A., & Pawelzik, E. (2008b). Impact of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany, 95, 325-332. https://doi.org/10.1016/ envexpbot.2008.08.002
  27. Khayyat, M., Tafazoli, E., Eshghi, M., Rahemi, M., & Rajaee, S. (2007). Salinity supplementary calcium and potassium effects on fruit yield and quality of strawberry (Fragaria ananassa). American-Eurasian Journal of Agricultural and Environmental Science 2(5): 539-544.
  28. Khayyat, M., Vazifeshenas, M. R., Rajaee, S., & Jamalian, S. (2009). Potassium effect on ion leakage, water usage, fruit yield and biomass production by strawberry plants grown under NaCl stress. Journal of Fruit and Ornamental Plant Research, 17(1), 79–88.
  29. Khoshravesh, M., & Kiani, A.R. (2015). The effect of magnetized saline water on infiltration and electrical conductivity in different soil textures. Iranian Journal of Irrigation & Drainage, 9(4), 646-654. (In Persian with English abstract)
  30. Khoshravesh, M., Erfanian, F., & Pourgholam-Amiji, M. (2021). The effect of irrigation with treated magnetic effluent on yield and yield components of maize. Water Management in Agriculture, 8(1), 115-128. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.24764531.2021.8.1.10.8
  31. Khoshravesh, M., Mirzaei, S.M.J., Shirazi, P., & Norooz Valashedi, R. (2018). Evaluation of dripper clogging using magnetic water in drip irrigation. Applied Water Science, 8(3), 1177-1191. https://doi.org/10.1007/s13201-018-0725-7
  32. Li, H., Lascano, R.J., Booker, J., Wilson, L.T., Bronson, K.F., & Segarra, E. (2002). State‐space description of field heterogeneity: Water and nitrogen use in cotton. Soil Science Society of America Journal, 66(2), 585-595. http://doi.org/10.2136/sssaj2002.5850
  33. Loulaei, A., Samavat, S., & Habibi, Sh. (2013). Investigating the interaction effect of salinity and calcium chloride on quality traits and yield of Gamrosa strawberry. Journal of Iranian Plant Ecophysiological Research, 8(29), 38-46. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.76712423.1392.8.29.4.2
  34. Maas, E.V., & Hoffman, G.J. (1977). Crop salt tolerance—current assessment. Journal of the Irrigation and Drainage Division, 103(2), 115-134. https://doi.org/10.1061/JRCEA4.0001137
  35. Mahmoudi, G., Ghanbari, A., Rastgoo, M., Gholi Zade, M., & Tahmasebi, I. (2016). Evaluating the magnetic field effects on growth and yield of chickpea (Cicer arietinum) under Mashhad climatic conditions. Iranian Journal of Field Crops Research, 14(2), 380-391. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20081472.1395.14.2.14.3
  36. Mazloomi, F., Ronaghi, A., & Karimian, N. (2011). Influence of salinity and supplementary calcium on vegetative growth, fruit yield and concentration of some nutrients in hydroponically-grown strawberry. Journal of Soil and Plant Interactions, 2(2), 51-63. (In Persian with English abstract)
  37. Mirfattahi, Z., & Eshghi, S. (2023). Acetic acid alleviates salinity damage and improves fruit yield in strawberry by mediating hormones and antioxidant activity. Erwerbs-Obstbau 1-10. https://doi.org/10.1007/s10341-023-00840-9
  38. Mostafazadeh-Fard, B., Khoshravesh, M., Mousavi, S.F., & Kiani, A.R. (2011). Effects of magnetized water on soil sulphate ions in trickle irrigation. 2nd International Conference on Environmental Engineering and Application (ICEEA 2011). 19-21 August, Shanghai, China.
  39. Mostafazadeh-Fard, B., Khoshravesh, M., Mousavi, S.F., & Kiani, A.R. (2012). Effects of magnetized water on soil chemical components underneath trickle irrigation. Journal of Irrigation and Drainage Engineering, 138(12), 1075-1081. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000513
  40. Muhammad Aslam, M., Waseem, M., Jakada, B.H., Okal, E.J., Lei, Z., Saqib, H.S.A., & Zhang, Q. (2022). Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences, 23(3), 1084. https://doi.org/3390/ijms23031084
  41. Neocleous, D., & Vasilakakis, M. (2007). Effect of NaCl stress on red raspberry (Rubus idoeus Autumn Bliss). Scientia Horticulture, 112, 282-289. https://doi.org/10.1016/j.scienta.2006.12.025
  42. Nikbakht, J., & Talei, A. (2019). Effect of magnetized water on hydraulic properties of tape irrigation system and yield and water use efficiency in maize. Journal of Water and Soil Resources Conservation, 8(4), 21-36. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.22517480.1398.8.4.2.9
  43. Nikbakht, J., Khandehrouyan, M., Tavakoli, A., & Tahheri, M. (2014). The effect of magnetic water deficit on yield and water use efficiency of corn. Journal of Water Research in Agriculture, 24(4), 551-563.
  44. Osmanpour, S., Mozafari, A., & Ghaderi, N. (2021). Effect of silica nanoparticles and jasmonic acid on some physiological characteristics of strawberry under salinity stress. Journal of Soil and Plant Interactions, 11(4), 51-64. (In Persian with English abstract). http://dx.doi.org/10.47176/jspi.11.4.19721
  45. Pourgholam-Amiji, M., Khoshravesh, M., Divband Hafshejani, L., & Ghadami Firouzabadi, A. (2022). The effect of irrigation with treated magnetic effluent on water productivity of maize. Iranian Journal of Irrigation & Drainage, 16(1), 243-253. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20087942.1401.16.1.19.6
  46. Ramesh, A., & Ostad-Ali-Askari, K. (2023). Effects of magnetized municipal effluent on some physical properties of soil in furrow irrigation. Applied Water Science 13(1): 26. https://doi.org/10.1007/s13201-022-01811-3
  47. Rastegari, S., & Sadeghi-Lari, A. (2015). Effect of magnetized water on seed germination and early growth characteristics of tomato. Journal of Water Research in Agriculture, 29(3), 409-417. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.22287140.1394.29.3.10.2
  48. Saied, A.S., Keutgen, A.J., & Noga, G. (2005). The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs.‘Elsanta’and ‘Korona’. Scientia Horticulturae, 103(3), 289-303. https://doi.org/10.1016/j.scienta.2004.06.015
  49. Seyedlor Fatemi, L., Tabatabaei, J., & Fallahi, E. (2009). The effect of silicon on the growth and yield of strawberry grown under saline conditions. Journal of Horticultural Science, 23(1), 88-95. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20084730.1388.23.1.10.6
  50. Shokrani, F., Pirzad, A., Zardashti, M., & Darvishi, R. (2011). The effect of irrigation interruption and different amounts of nitroxin on yield and yield components of marigolds. National conference on climate change and its impact on agriculture and environment, Urmia, West Azerbaijan. (In Persian with English abstract). https://doi.org/15897/AJB11.2952
  51. Singh, S.K., Sharma, H.C., Goswami, A.M., Datta, S.P., & Singh, S.P. (2000). In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia Plantarum, 43(2), 283-286. https://doi.org/10.1023/A:1002720714781
  52. Turhan, E., & Eris, A. (2005). Effects of sodium chloride applications and different growth media on ionic composition in strawberry plant. Journal of Plant Nutrition, 27(9), 1653-1665. https://doi.org/10.1081/PLN-200026009
  53. Wang, Y., & Nil, N. (2000). Changes in chlorophyll, ribulose bisphosphate carboxylase–oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology, 75, 623–627. https://doi.org/10.1080/14620316.2000.11511297
  54. Yadollahi, A.H., Khoshravesh, M., & Gholami Sefidkouhi, M.A. (2022). Effect of regulated deficit irrigation with magnetized water on quantitative, qualitative properties and water productivity of green pea. Journal of Water Research in Agriculture, 35(4), 373-389. (In Persian with English abstract). https://doi.org/10.22092/jwra.2021.356340.897
  55. Yoon, J.Y., Homayun, M., Lee, S., & Lee, I. (2009). Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology, 12(2), 63-68. https://doi.org/10.1007/s12892-009-0060-5
  56. Yusefi, M., Tabatabaei, S., Hajilu, J., & Mahna, N. (2011). The effect of partial root salinization on the yield and fruit quality in strawberry. Journal of Agricultural Science and Sustainable Production, 21(1), 135-144. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.24764310.1390.21.1.11.9
  57. Zahedi, S.M., Hosseini, M.S., Abadía, J., & Marjani, M. (2020). Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria× ananassa). Plant Physiology and Biochemistry, 149, 313-323. https://doi.org/10.1016/j.plaphy.2020.02.021
  58. Zandi, M., Aboutalebi Jahromi, A., Behroznam, B., & Zakerin, A. (2022). Effectiveness of acid gibberellic and magnetic field on shelf life and post-harvest life of strawberry cv. Selva under temperature stress conditions. Journal of Horticultural Science (In Publishing) (In Persian with English abstract). https://doi.org/10.22067/jhs.2022.74406.1121

 

 

CAPTCHA Image