اثر مدیریت آبیاری بر شاخص‌های بهره‌وری مصرف آب محصول یونجه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 کارشناس برنامه ریزی کشوری، سازمان برنامه و بودجه استان زنجان

3 دانشجوی دکتری، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

4 استادیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

5 استادیار، گروه علوم و مهندسی آب،دانشکده کشاورزی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران

6 ترویج کشاورزی و توسعه روستایی، گروه ترویج و آموزش کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

تحقیق حاضر با هدف پایش بهره­وری مصرف آب محصول یونجه و بررسی اثر اصلاح برنامه آبیاری بر کاهش مصرف آب و ارتقای شاخص­های بهره­وری انجام شد. در مرحله اول تحقیق، تعداد 11 مزرعه یونجه واقع در استان زنجان انتخاب و مورد مطالعه قرار گرفت. عوامل مرتبط با بهره­وری نظیر شدت جریان ورودی به مزارع، حجم آب مصرفی، برنامه آبیاری، مدیریت تغذیه، عملکرد محصول، هزینه­های تولید و درآمد حاصل از فروش محصول تعیین و شاخص­های فیزیکی و اقتصادی بهره­وری مصرف آب محاسبه شد. در مرحله دوم، اصلاح مدیریت آبیاری به عنوان راهکار اجرایی به منظور بهبود بهره­وری مصرف آب در شرایط واقعی مزرعه در قالب قطعات کنترل­شده اجرا و با وضع موجود مقایسه شد. بر اساس نتایج حاصل از پایش­های میدانی، میانگین حجم آب آبیاری در مزارع یونجه در حدود 14250 متر مکعب در هکتار و میانگین شاخص­های بهره­وری مصرف آب CPD، BPD و NBPD به ترتیب برابر 79/0 کیلوگرم بر متر مکعب، 1/16 و 9/8 هزار ریال بر متر مکعب برآورد شد. به طور میانگین اعمال برنامه صحیح آبیاری در قطعات کنترل­شده منجر به کاهش 5/49 درصدی حجم آب آبیاری و به تبع آن افزایش 72 درصدی شاخص بهره­وری فیزیکی شد. تثبیت الگوی اشتباه برنامه آبیاری و عدم کنترل و نظارت بر بهره­برداری از منابع آب دلایل اصلی مصرف بی­رویه آب در مزارع یونجه شناخته شد. نتایج مرحله دوم اجرای پژوهش نشان داد، تنها با اصلاح مدت زمان آبیاری می­توان حجم آب آبیاری را بطور قابل ملاحظه­ای کاهش و بهره­وری مصرف آب را بهبود بخشید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Irrigation Management on Water Productivity Indicators of Alfalfa

نویسندگان [English]

  • H. Ojaghlou 1
  • F. Ojaghlou 2
  • Mohammad Mahdi Jafari 3
  • Farhad Misaghi 4
  • Bijan Nazari 5
  • Esmaeil Karami Dehkordi 6
1 Department of Water Sciences and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 National Planning Expert, Planning and Budget Organization of Zanjan Province
3 Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
4 Assist. Prof., Dept. of Water Sciences and Engineering, Faculty of Agriculture, University of Zanjan
5 Assistant Professor, Department of Water Science and Engineering, Faculty of Agriculture, Imam Khomeini International University, Qazvin, Iran.
6 Agricultural Extension and Rural Development, Agricultural Extension and Education Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Introduction
Over the last years, long-term average rainfall has experienced a meaningful decrease (from 250 to 206 mm per year) leading to continuous drought in Iran. In addition, population growth and increasing demand for food put more pressure on the limited available water resources. Thus, the quantitative and qualitative improvement of agricultural products become a necessity. There is 640,000 hectares of alfalfa cultivated land, standing for 5.4% of the total cultivated area. One of the most basic obstacles in these farms is the unsuitable model of water consumption management. Previous studies were conducted with the aim of evaluating the mutual effects of different treatments in controlled plots. Nonetheless, there is a need for large-scale investigations to monitor and improve water productivity in agricultural systems. In this research, the focus was on irrigation management and optimizing irrigation timing as a potential solution to enhance water productivity, considering the fixed irrigation cycles and traditional use of available water resources. The study began by assessing the current water productivity in 11 alfalfa farms located across four regions in Zanjan province, ensuring a suitable spatial distribution. Subsequently, the impact of irrigation management, particularly the adjustment of irrigation timing, was evaluated to determine its effectiveness in improving water productivity in these farms.
Materials and Methods
Eleven alfalfa farms, covering a total area of 28 hectares, were initially selected in the agricultural lands of Zanjan province. The majority of these farms were equipped with sprinkler irrigation systems. From these 11 farms, two specific farms were chosen to implement the proposed methods aimed at improving water productivity. These selected farms served as experimental sites where the irrigation management techniques were applied and evaluated. Improvement solutions were mainly focused on irrigation management. Each farm was divided into two parts; one part with real conditions (farmers' management) and the second one with controlled conditions. In the controlled treatments, irrigation management was implemented through optimization of irrigation time. A nutritional program was also prepared according to the soil quality of the fields and applied in the controlled treatments. In each farm, basic information such as area, physical and chemical properties of soil and water quality were determined. Irrigation information (such as inflow discharge and irrigation schedule) was measured and determined at least three times during the cropping season. Soil moisture were measured before and after irrigation in order to calculate the water application efficiency. The amount of harvested product and production costs were obtained at the end of the cropping season through measurements and interviews with farmers. In this research, the indicators including the volume of irrigation water, the water use efficiency, and the physical and economic efficiency of water have been calculated to analyze the water productivity.
Results and Discussion
The volume of irrigation water in alfalfa farms was measured as 14250 m3/ha on average (with the lowest and highest consumption values of 9849 and 20576 m3/ha, respectively). The average of irrigation water in farms with surface irrigation systems equals to 17,806 and in farms equipped with sprinkle irrigation systems is about 13,460 m3/ha. While the net water requirement of alfalfa in study area was 7160 to 7290 m3/ha. The minimum and maximum values of water application efficiency were 38.3 and 82%, respectively, with average of 64%. The average of application efficiency in surface and sprinkle irrigation systems were obtained 50 and 67%, respectively. The measured alfalfa yield ranged from a minimum of 6.5 ton/ha to a maximum of 14.1 ton/ha, with an average yield of 10.4 ton/ha. After implementing the revised irrigation program in the controlled plots, the harvested water decreased by an average of 49.5%. It was observed that the irrigation schedule in most farms followed a traditional and estimated pattern, with the depth of irrigation water in the middle of the growing season exceeding the net irrigation requirement. The water use efficiency (WUE) values varied between 0.42 and 1.28 kg/m3, with a minimum value of 0.42 kg/m3 and a maximum value of 1.28 kg/m3. The average WUE was calculated as 0.79 kg/m3. Analyzing the correlation between water consumption and the water use efficiency index revealed a decreasing trend. As the volume of irrigation water increased, the water use efficiency index experienced a decline. Specifically, an increase of 1000 m3 in irrigation water resulted in a decrease of 0.04 kg/m3 in the water use efficiency index. The implementation of the corrected irrigation program and appropriate to the water demand led to an increase of the mentioned index by 72%.
Conclusion
The lack of proper irrigation programs that consider climatic conditions and the actual needs of the alfalfa plant was identified as a key factor contributing to high water consumption in the farms. Additionally, the inefficient selection and design of the irrigation system led to lower irrigation efficiency than expected. Despite the majority of farms being equipped with sprinkle irrigation systems, the harvested water did not decrease significantly due to inadequate water management practices. These factors ultimately resulted in a decline in both physical and economic productivity indicators in the alfalfa farms. However, the results of the study highlighted that implementing corrected irrigation management, particularly through modifications to the irrigation timing, can lead to a significant decrease in volume of irrigation water and an improvement in both physical and economic productivity.

کلیدواژه‌ها [English]

  • Efficiency
  • Irrigation scheduling
  • Water use efficiency
  1. Abbasi, F., Abbasi, N., & Tavakoli, A. (2017). Water productivity in agriculture: challenges and perspectives. Journal of Water and Sustainable Development, 4(1), 141-144. (In Persian with English abstract). https://doi.org/10.22067/jwsd.v4i1.67121
  2. Amini, A., Porhemmat, J., & Sedri, H. (2020). Investigating the physical and economic efficiency of water in major crops in the Talvar Watershed, Kurdistan, Iran. Watershed Engineering and Management, 12(2), 481-491. (In Persian with English abstract). https://doi.org/10.22092/ijwmse.2019.123085.1534
  3. Angus, J.F., Herwaarden, A., Howe, G.N., & Van, H.A. (1991). Productivity and break crop effects of winter-growing oilseeds. Animal Production Science, 31(5), 669-677.
  4. Bahrami, M., Khalilain, S., Mortazavi, S.S., & Asaadi, M.A. (2019). Evaluation of physical productivity of water agricultural in selected provinces in Iran (Case study: wheat crop). Iranian Journal of Irrigation and Drainage, 12(6), 1511-1518. (In Persian with English abstract)
  5. Balik, M., Grismer, M.E., & Tod, L. (2001). Reduced run off irrigation of alfalfa in Imperial Valley, California. Journal of Irrigation and Drainage Engineering, 127, 123-130. https://doi.org/10.1061/(ASCE)0733-9437(2001) 127:3(123)
  6. Behnamfar, K., Siadat, S.A., Bakhshandeh, A.M., Kashefipour, S.M., Alemi saied, Kh., & Jafari, A.A. (2014). Evaluation of Impct of Water Deficit on Yield and Water Use Efficiency of Four Cultivars Alfalfa (Medicago sativa) in Khuzestan Conditions – Ahvaz. Journal of Irrigation Sciences and Engineering, 37(3), 63-71. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.25885952.1393.37.3.7.9
  7. Berrada, A. (2005). Alfalfa response to water deficit using subsurface drip irrigation. Technical bulletin (Colorado Agricultural Experiment Station); TB-05-1,1-21. http://hdl.handle.net/10217/39158
  8. Carter, C.M., Garcia, A.G.Y., Islam, M.A., & Hansen, K. (2013). Effect of deficit irrigation on water use and water use efficiency of alfalfa. In: Proceeding of American Society of Agricultural and Biological Engineers, Kansas City, Missouri. https://elibrary.asabe.org/abstract.asp?aid=44069
  9. Cetin, O., & Bilgel, L. (2002). Effects of different irrigation methods on shedding and yield of cotton. Agricultural Water Management, 54(1), 1-15. https://doi.org/10.1016/S0378-3774(01)00138-X
  10. Darapuneni, M.K., Lauriault, L.M., Vanleeuwen, D.M., & Angadi, S.V. (2020). Influence of irrigation regimes on alfalfa dry matter yield and water productivity in a semiarid subtropical environment. Irrigation and Drainage, 69(5), 1063-1071. https://doi.org/10.1002/ird.2490
  11. Del Pozo, A., Ovalle, C., Espinoza, S., Barahona, V., Gerding, M., & Humphries, A. (2017). Water relations and useefficiency, plant survival and productivity of nine Alfalfa (Medicago sativa) cultivars in dryland Mediterranean conditions. European Journal of Agronomy, 4, 16-22. https://doi.org/10.1016/j.eja.2016.12.002
  12. Ehsani, M., & Khaledi, H. 2003. Agricultural water efficiency. Irrigation and Drainage Committee, 82, 1-109. (In Persian)
  13. Fan, Y., Wang, C., & Nan, Z. (2014). Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China. Agricultural Water Management, 146, 335-345. https://doi.org/10.1016/j.agwat.2014.09.001
  14. Farahza, M.N., Nazari, B., Akbari, M.R., Naeini, M.S., & Liaghat, A. (2020). Assessing the physical and economic water productivity of annual crops in Moghan plain and analyzing the relationship between physical and economic water productivity. Irrigation and Water Engineering, 11(2), 166-179. (In Persian with English abstract). http://www.waterjournal.ir/article_120729.html#:~:text=10.22125/IWE.2020.120729
  15. Foster, T., Brozović, N., Butler, A.P., Neale, C.M.U., Raes, D., Steduto, P., & Hsiao, T.C. (2017). AquaCrop-OS: An open source version of FAO's Crop water productivity model. Agricultural Water Management, 181, 18-22. https://doi.org/10.1016/j.agwat.2016.11.015
  16. Ghadami Firouzabadi, A. (2012). Technical evaluation of low pressure irrigation pipe (Hydro flume) and comparison with traditional and sprinkler irrigation systems. International Journal of Agriculture and Crop Sciences, 4(3), 108-113.
  17. Ghadami Firouzabadi, A., & Seyedan, S.M. (2019). Evaluation of irrigation water productivity and economic analysis of alfalfa production in sprinkler and surface irrigation systems. Journal of Irrigation and Water Engineering, 10(37), 136-149. (In Persian with English abstract). https://doi.org/10.22125/iwe.2019.95880
  18. Ghaderpour, O., Rafiee, S., & Sharifi, (2017). Analysis and modeling of energy and cost of alfalfa production using adaptive neural fuzzy inference system in Bukan city. Iranian Journal of Biosystems Engineering, 48(1), 179-190. (In Persian with English abstract). https://doi.org/10.22059/ijbse.2017.61573
  19. Gholami, Z., Ebrahimian, H., & Noory, H. (2015). Investigation of irrigation water productivity in sprinkler and surface irrigation systems (Case study: Qazvin plain). Journal of Irrigation Sciences and Engineerin, 41(1), 17-30. (In Persian with English abstract). https://doi.org/10.22055/jise.2018.13447
  20. Goudarzi, M., Akbari, M., & Hedayatipour, A. (2021). The efficiency of water consumption in the production of alfalfa fodder in the conditions of farmers in Central Province. Fodder and Animal Feed Promotional Magazine, 2(1), 87-95. (In Persian)
  21. Hamdi Ahmadabadi, Y., Liaghat, A., Rasoulzadeh, A., & Ghaderpour, R. (2019). Investigation of in the capita water consumption variation in Iran based on the past two-deca diet. Iranian Journal of Soil and Water Research 50(1): 77-87. (In Persian with English abstract). https://doi.org/10.22059/ijswr.2018.246084.667795
  22. Heidari Sharif Abad, H., & Dari, M.G. (2001). Forage Plants (Nyamdaran). Publications and Research Institute of Forests and Rangelands.
  23. Heydari, N. (2011). Determination and evaluation of water use efficiency of some major crops under farmers management in Iran. Journal of Water and Irrigation Management, 1(2), 43-57. (In Persian with English abstract)
  24. Heydari, N. (2014). Water productivity in agriculture: challenges in concepts, termsand values. Irrigation and Drainage, 63(1), 22–28. https://doi.org/10.1002/ird.1816
  25. Howell, TA., Evtt, S.R., & Tolk, J.A. (2001). Irrigation systems and management to meet future food/fiber needs and to enhance water use efficiency. In Proceedings of the INIFAP-ARS Joint Meeting; A Frame Work for Cooperation. Rio Bravo. Tamaulipas, Mexico and Weslaco, Texas, USA: 10-14.
  26. Jafari, M.M., Ojaghlou, H., & Zare, M. (2020). Groundwater level fluctuation simulation using support vector machines and adaptive neuro fuzzy inference system (Case study: Maragheh plain). Iranian Journal of Irrigation and Drainage, 3(14), 942-956. (In Persian with English abstract)
  27. Karimi, B., Karimi, N., Shiri, J., & Sanikhani, H. (2022). Modeling moisture redistribution of drip irrigation systems by soil and system parameters: regression-based approaches. Stochastic Environmental Research and Risk Assessment, 36, 157-172. https://doi.org/10.1007/s00477-021-02031-y(0123456789().,-vol(V0)123456789().,-volV)
  28. Karimi, M., & Jolaini, M. (2017). Evaluation of agricultural water productivity indices in major field crops in Mashhad plain (technical note). Journal of Water and Sustainable Development, 4(1), 133-138. (In Persian with English abstract). https://doi.org/10.22067/jwsd.v4i1.52783
  29. Keshavarz, A., & Dehghanisanije, H. (2012). Water productivity index and solutions for future agricultural activities in Iran. Economic Stratrgy, 1(1), 199-233. (In Persian with English abstract)
  30. Lashanizand, M., Payamani, K., & Vyskarami, E. (2015). Investigating actual schema in agricultural using water surface, case study: Honam watershed. Journal of Watershed Engineering and Management, 6(4), 400-406. (In Persian with English abstract). https://doi.org/10.22092/ijwmse.2015.100822
  31. Li, M., Liu, Y., Yan, H., & Sui, R. (2017). Effects of irrigation amount on alfalfa yield and quality with a center-pivot system. Transactions of the American Society of Agricultural and Biological Engineers, 60(5), 1633-1644. https://elibrary.asabe.org/abstract.asp?aid=48474
  32. Li, Y., & Su, D. (2017). Alfalfa water use and yield under different sprinkler irrigation regimes in North arid regions of China. Sustainability 9(8): 1380. https://doi.org/10.3390/su9081380
  33. Liu, J., Zehnder, A.J.B., & Yang, H. (2008). Drops for crops: modelling crop water productivity on a global scale. Global Nest Journal, 10(3), 295-300.
  34. Mobtaker, H.G., Akram, A., Keyhani, A., & Mohammadi, A. (2011). Energy consumption in alfalfa production: A comparison between two irrigation systems in Iran. African Journal of Plant Science, 5(1), 47-51.
  35. Modir Shanechi, M. (2006). Production and Management of Forage Plants. Published Astan Quds Razavi 1-448. (In Persian)
  36. Mofidian, S.M.A., Agha Shahi, A.R., & Moghadam, A. (2013). Quantitative and qualitative forage yield of cold-region alfalfa ecotypes of Iran. Seed and Plant Journal, 1-29(4), 745-729.
  37. Moinizadeh, M., Piri, I., Tavasoli, A., & Shojaei, S. (2017). Study of quantitative and qualitative forage yield of alfalfa cultivars (Medicago sativa) in different harvest in Khash region. Journal of Applied Research of Plant Ecophysiology, 3(2), 127-140. (In Persian). http://arpe.gonbad.ac.ir/article-1-223-fa.html
  38. Naroua, I., Rodríguez, L., & Calvo, R.S. (2014). Water use efficiency and water productivity in the Spanish irrigation district “Río Adaja”. International Journal of Agricultural Policy and Research, 2(12), 484-491. https://doi.org/ 10.15739/IJAPR.021
  39. Nazari, B., Liaghat, A., Akbari, M.R., & Keshavarz, M. (2018). Irrigation water management in Iran: Implications for water use efficiency improvement. Agricultural Water Management, 208, 7-18. https://doi.org/10.1016/j.agwat. 2018.06.003
  40. Ojaghlou, H., Sohrabi, T., Abbasi, F., & Javani, H. (2020). Development and evaluation of a water flow and solute transport model for furrow fertigation with surge flow. Irrigation and Drainage, 69, 682-695. https://doi.org/10.1002/ird.2478
  41. Qi, W., Zhang, Z., Wang, C., & Huang, M. (2021). Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation. Agricultural Water Management, 248, 106756. https://doi.org/10.1016/j.agwat.2021.106756
  42. Rogers, M.E., Lawson, A.R., & Kelly, K.B. (2016). Lucerne yield, water productivity and persistence under variable and restricted irrigation strategies. Crop and Pasture Science, 67(5), 563-573. https://www.publish.csiro.au/cp/ cp15159#:~:text=https%3A//doi.org/10.1071/CP15159
  43. Safavi, M., asareh, A., Khorramian, M., Khodadadi dehkordi, D., & Egdernezhad, A. (2022). Effect of different levels of tape irrigation on yield and water productivity of tropical Alfalfa cultivars. Journal of Water and Soil Science - Isfahan University of Technology, 26(1), 211-222. (In Persian). http://jstnar.iut.ac.ir/article-1-4081-fa.html
  44. Salvador, R., Martinez-Cob, A., Cavero, J., & Playán, E. (2011). Seasonal on-farm irrigation performance in the EbroBasin (Spain): Crops and irrigation systems. Agricultural Water Management, 98(4), 577–587. https://doi.org/ 10.1016/j.agwat.2010.10.003
  45. Seckler, D., Baker, R., & Amarasinghe, U.A. (1999). Water scarcity in the twenty-first century. International Journal of Water Resources Development, 15(1-2), 29–42.
  46. Sepahvand, M. (2009). Comparing water need, water productivity and its economic productivity for wheat and canola in western Iran for rainy years. Iranian Journal of Water Research, 3(4), 63-68. (In Persian with English abstract)
  47. Shewmaker, G.E., Allenand, R.G., & Neibling, W.H. (2013). Alfalfa Irrigation and Drought. University of Idaho College of Agriculture and Life Science: Moscow, ID, USA.
  48. Solat, S., Alinazari, F., Maroufpoor, E., Shiri, J., & Karimi, B. (2021). Modeling moisture bulb distribution on sloping lands: Numerical and regression-based approaches. Journal of Hydrology, 601, 126835. https://doi.org/ 10.1016/j.jhydrol.2021.126835
  49. Undersander, D., Cosgrove, , Cullen, E., Rice, M.E., Renz, M., Sheaffer, C., Shewmaker, G., & Sulc, M. (2011). Alfalfa Management Guide. Wisconsin American Society of Agronomy. https://www.agronomy.org/files/publications/alfalfa-management-guide.pdf
  50. Zamani, O., Mortazavi, S.A., & Balali, H. (2015). Economical water productivity of agricultural products in Bahar Plain, Hamadan. Journal of Water Research in Agriculture, 28(1), 51-62. (In Persian with English abstract). https://doi.org/10.22092/jwra.2015.101065
  51. Zhang, J., Qian Wang, Q., Pan Pang, X., Peng Xu, H., Juan Wang, J., Na Zhang, W., & Gang Guo, Z. (2021). Effect of partial root-zone drying irrigation (PRDI) on the biomass, water productivity and carbon, nitrogen and phosphorus allocations in different organs of alfalfa. Agricultural Water Management, 243(1), 1-11. https://doi.org/10.1016/j.agwat.2020.106525
  52. Zhang, Q., Liu, , Liu, X., Li, S., Sun, Y., Lu, W., & Ma, C. (2020). Optimizing water and phosphorus management to improve hay yield and water- and phosphorus-use efficiency in alfalfa under drip irrigation. Food Science and Nutrition, 8(5), 2406-2418. https://doi.org/10.1002/fsn3.1530
  53. Zibayi, M. (2007). Factors affecting continuity in using sprinkler irrigation systems in Fars Province, comparison of logistic regression and discriminant analysis. Iranian Journal of Agricultural Economics, 1(2), 183-194. (In Persian)

 

CAPTCHA Image