بررسی قابلیت گیاه‌پالایی آتریپلکس (sp. Atriplex) و خرزهره (Nerium oleander) در جذب فلزات سنگین سرب و کادمیوم در مرکز دفن آرادکوه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده فنی و مهندسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران

2 گروه محیط زیست، دانشکده فنی و مهندسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

3 کارشناس ارشدگروه محیط زیست، دانشکده فنی و مهندسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

فلزات سنگین یکی از آلاینده­های اصلی شیرابه زباله هستند که می­توانند گیاهان و خاک اطراف محل دفن را آلوده نمایند. در این پژوهش به بررسی تجمع فلزات سنگین سرب و کادمیوم در دو گونه گیاهی آتریپلکس (sp. Atriplex) و خرزهره (Nerium oleander) در مرکز دفن آرادکوه شهر تهران پرداخته شد. در این مرکز، گیاه آتریپلکس به صورت خودرو در چهار منطقه و خرزهره به صورت دست­کاشت در یک منطقه وجود دارد. از هر منطقه رویش آتریپلکس، 10 نمونه به­طور تصادفی از ریشه و اندام­ هوایی و خاک پای گیاه (جمعا 120 نمونه) برداشت شد. هم­چنین از ریشه، ساقه و برگ­های گیاه خرزهره هر کدام 10 نمونه و 10 نمونه از خاک پای هر گیاه نمونه­برداری گردید (جمعا 40 نمونه). بر اساس نتایج، غلظت سرب و کادمیوم در اندام هوایی آتریپلکس منطقه 2 با میانگین به‌ترتیب 7/19 و 75/5 میلی­گرم بر کیلوگرم از دیگر مناطق به­صورت معنی­داری بیشتر بود و این در حالی است که در گیاه خرزهره میانگین غلظت این فلزات در ریشه (با مقادیر 17/8 و 06/1 میلی­گرم بر کیلوگرم به‌ترتیب برای سرب و کادمیوم) بیشتر از اندام هوایی بود. میزان تجمع عنصر سرب در خاک پای گیاه خرزهره با میانگین 13/35 میلی­گرم بر کیلوگرم و کادمیوم درخاک آتریپلکس منطقه 2 با میانگین 78/3 میلی­گرم بر کیلوگرم نیز از دیگر مناطق به صورت معنی­داری بیشتر بود و با اینکه هر دو فلز در محدوده مجاز استانداردهای ملی و سازمان بهداشت جهانی واقع شدند، اما خاک منطقه براساس شاخص Nemerow در وضعیت آلودگی زیاد قرار داشت. همچنین میانگین فاکتور تجمع زیستی اندام­های هوایی در چهار منطقه رویشی آتریپلکس برای سرب و کادمیوم به‌ترتیب برابر با 44/1 و 3/1 بود، در صورتی‌که ریشه این گیاه در هیچ یک از مناطق رویشی، ضریب تجمع زیستی بالاتر از 1 برای فلزات مذکور نداشت. در مورد خرزهره نیز ضریب تجمع زیستی کادمیوم و سرب در اندام هوایی و ریشه بالاتر از 1 گزارش نشد. به طور­کلی، می­توان گفت که آتریپلکس برای استخراج عناصر سرب و کادمیوم از خاک و تجمع این فلزات در اندام­های هوایی مناسب به نظر می­رسد. در صورتی که خرزهره برای تثبیت یا استخراج عناصر مذکور مناسب نبوده و قابلیت اندکی برای تجمع فلزات مذکور در ریشه یا اندام هوایی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation on Phytoremediation Capability of Artiplex (Atriplex sp.) and Oleander (Nerium oleander) in Aradkooh Landfill for Cadmium and Lead

نویسندگان [English]

  • M. Rafati 1
  • M. Malekzadeh 2
  • M. Firoozi 3
1 Department of Environment, Technical and Engineering Faculty,, North Tehran Branch, Islamic Azad university, Tehran
2 Department of Environment, Faculty of ،Technical and Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
3 Department of Environment, Faculty of Technical and Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Intruduction
Increasing industrial activities with the production of pollutants, including heavy metals, is one of the serious problems of modern communities, which has led to their accumulation in the environment. Heavy metals are also one of the important pollutants in landfill leachate. Plants and soil near the landfill may be contaminated by the leachate. Landfilling is the oldest method of solid waste disposal which can be a threat to the environment and health. Due to its easy operation and cost-effective, landfill is the most widely used method of municipal solid waste disposal in the world. Pollution cleaning technologies to reduce the harmful effects in the locations contaminated with heavy metals can be done by physical, chemical and biological methods. Phytoremediation, as a biological method, uses the green plants to extract, sequester, and detoxify pollutants. This method is a low-cost technique, environmentally friendly, and due to the non-production of by-products, is non-destructive for natural ecosystems. Considering the high moisture of wastes in Iran and their potential to produce leachate, as well as the possibility of contamination of water and soil in the landfill, especially with heavy metals, this study was conducted with the aim of evaluating the accumulation of lead (Pb) and cadmium (Cd) heavy metals in the soil, shoots and roots of artiplex (Atriplex sp.) and oleander (Nerium olander) plants in Aradkooh landfill of Tehran.
 
Materials and Methods
This study was conducted in Aradkooh landfill which is located in the south of Tehran in the Kahrizak region. About 5200 tons of municipal solid waste were sent to this landfill every day. A part of the solid waste in Aradkoh was placed in various processes to energy and compost, and about 2500 tons of the solid waste was landfilled. According to previous reports, it is estimated that 250 cubic meters of leachate are produced daily in the Aradkoh landfill. In the studied landfill, there is an atriplex plant in four areas and a hand-planted oleander in one area. Ten samples of soil, root, and shoot, totaling 120 total were randomly selected from each growing area of the atriplex plant. Oleander shoots and soil were also tested from 10 different plants for a total of 40 samples. Then the levels of Cd and Pb in the soil, roots, and shoots were assessed. In this study, the outcomes were analyzed employing four key indices: the bioconcentration factor (BCF), the translocation factor (TF), the pollution index (PI), and PINemerow. The BCF and TF indices were employed to assess the phytoextraction and phytostabilization capabilities of plants, while the PI and PINemerow methods were used to pinpoint the most environmentally hazardous heavy metal in the soil.Results and Discussion
 According to the results, the concentration of Pb and Cd in  shoots of atriplex  area 2 (with an average of 19.7 and 5.75 mg/kg, respectively) were significantly higher than in other areas, while the concentration of these metals in root of oleander (with an average of 8.17 and 1.06 for Pb and Cd, respectively) were higher than the shoot. The amount of Pb element in soil of the oleander plant (with an average of 35.13 mg/kg) and Cd in soil of the atriplex area 2 (with an average of 3.78 mg/kg) were significantly higher than other areas. Additionally, the levels of heavy metals in the soil of two plants were higher than the Nemerow index, which indicated high levels of pollution in the sampling areas, but still below the safe levels that was set by national standards (3.9 and 300 mg/kg for Cd and Pb respectively) and the World Health Organization (5 and 40 mg/kg for Cd and Pb, respectively). In addition, bioaccumulation factor of shoot in all growth atriplex areas for Pb and Cd (with an average of 1.44 and 1.3, respectively) were higher than 1.0 while, the root bioaccumulation factors of this plant in any of the growth areas, were not higher than 1.0. In the case of oleander, the shoot and root bioconcentration factors  for Pb and Cd were not reported more than one.
 
Conclusion
In general, it appears that atriplex, a native plant in the Aradkooh landfill, exhibits superior capabilities for absorbing heavy elements compared to oleander. Therefore, atriplex seems well-suited for the extraction of Pb and Cd from the soil, as it can accumulate these metals in its shoots. In contrast, oleander is not well-suited for phytostabilization or phytoextraction of these elements, as it exhibits limited ability to accumulate these heavy metals in its roots and shoots. Consequently, atriplex can be a valuable choice as a resilient species for phytoremediation projects in landfills and areas near mines. It is worth noting that the Pb content in the soil is higher than that of Cd. Although both metals fall within the permissible limits of national and WHO standards, the soil in the Aradkooh landfill is considered to be significantly polluted based on the Nemerow index.

کلیدواژه‌ها [English]

  • Atriplex sp
  • Bioaccumulation factor
  • Nerium oleander
  • Phytoremediation
  • Translocation factor
  1. Alinia Keshtali, A.A. (2022). Cultivation of ornamental trees and shrubs. Agricultural Research, Education and Promotion Organization publication. 154 pages. (In Persian)
  2. Anjanapriya, S., Sureka, M., Gunasundari, P., Meenakshi, N., & Sasirekha, N. (2022). Providencia rettgeri AVRB20 with multiple tolerance of heavy metals from municipal solid waste dump site. Journal of Materials and Environmental Science, 13(01), 1-8.
  3. Anning, A.K., & Akoto, R. (2018). Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicology and Environmental Safety, 148, 97-104. https://doi.org/1016/j.ecoenv.2017.10.014.
  4. Bahrami, B., & ghorbani, A. (2016). Investigation and determining environmental factors affecting on distribution of rangeland habitats in Southeast of Sabalan. Journal of Natural Ecosystems of Iran, 7(1), 33-44. (In Persian with English abstract)
  5. Barasarathi, J., Auwal, H., Pariatamby, A., Shahul Hamid, F., & Chijioke Uche, E. (2021). Phytoremediation of leachate contaminated soil: a biotechnical option for the bio reduction of heavy metals induced pollution in tropical landfill. Environmental Science and Pollution Research, 29(7), 1-13. https://doi.org/10.1007/s11356-021-17389-3.
  6. El Fadili, H., Ben ali, M., Touach, N., El Mahi, M., & Lotfi, M. (2022). Ecotoxicological and pre-remedial risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in Morocco. Environmental Nanotechnology, Monitoring & Management, 17, 100640. https://doi.org/10.1016/j.enmm.2021.100640
  7. Ghaemi,A., & Majdeddin, F. (2017). Investigation of the phytoremediation of Vetiver and Eucalyptus by absorption of heavy metals from sewage in a contaminated soil with Landfill Leachate. Water Resource Engineering, 9(28), 98-106. (In Persian with English abstract)
  8. Ghorbanian, D., Sharafieh, H., Mozaffari, M., Amirjan, M., & Mirakhorli, R. (2018). Investigating the possibility of the establishment of the two species of the genus Atriplex (Atriplex canescens and Atriplex verrocifera) and comparing their forage production in saline and low yield soils. Iranian Journal of Range and Desert Research, 25(4), 761-769. (In Persian with English abstract)
  9. Ghosh, M., & Singh, S.P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, 3(1), 1-18.
  10. Gravand, F., Rahnavard, A., & Mohammad Pour, G. (2021). Investigation of the uptake of heavy metals in waste leachate by vetiver from a contaminated soil. Iranian Journal of Soil Research, 35(1), 89-104. (In Persian with English abstract)
  11. Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. https://doi.org/10.1016/j.ecoenv.2020.111887.
  12. Hamzenejad Taghlidabad, R., Khodaverdiloo, H., Rezapour, S., & Manafi. SH. (2012). Evaluating of efficiency of three halophyte plants for reduction of soil exchangeable sodium (ESP) and cadmium (Cd) and lead (Pb) contamination. Journal of Water and Soil Science, 16(60), 131-143. (In Persian with English abstract)
  13. Hassan, A., Pariatamby, A., Ossai, I.C., Ahmed, A., Muda, M.A., Wen, T.Z., & Hamid, F.S. (2021). Bioaugmentation‑assisted bioremediation and kinetics modelling of heavy metal‑polluted landfill soil. International Journal of Environmental Science and Technology, 19(7), 6729- 6754. https://doi.org/10.1007/s13762-021-03626-2
  14. Hassanpour, R., Zafarian, F., Rezvani, M., & Jalili, B. (2019). Study the effect of cadmium on plant pigments and antioxidant compounds of water mint (Mentha aquatica ), eryngo (Eryngium caucasicum Trautv.) and froriepia (Froriepia subpinnata Ledeb.). Eco Phytochemistry Journal of Medicinal Plants, 7(2), 91-103. (In Persian with English abstract)
  15. Khorami Pour, S., Mafi Gholami, R., & Jahani, A. (2019). An investigation on the possibility of heavy metal (Pb and Ni) phytoremediation from plant Artemisia sieberi in Mohammadabad Waste disposal site in Ghazvin. Journal of Environmental Science and Technology, 21(10), 91-103. (In Persian with English abstract)
  16. Kowalska, J.B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z
  17. Kowsari, M.H., Saghi, M.H., Ashoori, R., Rastgar, A., & Fakour, A. (2022). Investigating and compiling a map of the Sseverity of heavy metal pollution in the soil around the landfill of Sabzevar municipal waste with different indicators. Journal of Environmental Health Sustainability Development, 7(1), 1547-60. https://doi.org/10.18502/jehsd.v7i1.8965
  18. Mahohi, A., Raiesi, F., & Hosseinpur, A.R. (2018). Phytoremediation of Lead in the presence of individual and combined inoculation of earthworms, arbuscular mycorrhizal fungi and rhizobacteria by maize. Journal of Water and Soil Conservation, 25(2), 91-110. (In Persian with English abstract)
  19. Marsum, M., Taufik A., Slamet, S., Khayan, Kh., & Slamet, W. (2022). Phytoremediation as a barrier to heavy metal distribution in open dumping landfill in peatlands. Journal of Ecological Engineering, 23(6), 112–117. https://doi.org/12911/22998993/148149
  20. Mattina, M.J.I., Lannucci-Berger, W., Musante, C., & White, J.C. (2003). Concurrent plant uptake of heavy metal and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375-378. https://org/10.1016/S0269-7491(03)00060-5
  21. Mehrab, N., Chorom, M., & Norouzi Masir, M. (2020). Efficiency of Nitrilo Triacetic Acid (NTA) on leaching and refining of cadmium from soil by maize. Journal of Water and Soil, 34(3), 593-608. (In Persian with English abstract)
  22. Mohammadi, A.A., Zarei, A., Esmaeilzadeh, M., Taghavi, M., Yousefi, M., Yousefi, Z., Sedighi, F., & Javan, S. (2020). Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur, Iran. Biological Trace Elements Research, 195, 343–352. https://doi.org/10.1007/s12011-019-01816-1.
  23. Motamedi, J., khodagholi, M., Sheidai Karkaj, E., & Ghodarzi, M. (2019). Positive and negative aspects of rangeland planting of native and non-native species of Atriplex. Iran Nature, 4(3), 43-5. (In Persian with English abstract)
  24. Motuzova,V., Minkina, T.M., Karpova, E.A., Barsova, N.U., Mandzhieva., S.S. (2014). Soil contamination with heavy metals as a potential and real risk to the environment. Journal of Geochemical Exploration, 144, 241-246. https://doi.org/10.1016/j.gexplo.2014.01.026.
  25. Ng, C.C., Rahman, M.M., Boyce, A.N., & Abas, M.R. (2016). Effects of different soil amendments on mixed heavy metals contamination in vetiver grass. Bulletin of Environmental Contamination and Toxicology, 97(5), 695–701. https://doi.org/10.1007/s00128-016-1921-5
  26. Nissim, W. G., Palm, E., Pandolfi, C., Mancuso, S., & Azzarello, E. (2021). Relationship between Leachate Pollution Index and growth response of two willow and poplar hybrids: Implications for phyto-treatment applications. Waste Management, 136, 162-173. https://doi.org/10.1016/j.wasman.2021.09.012
  27. Nofal, E.M.S., Shahin, S.M., EL-Tarawy, A.M.A., & Omar, S.H.M. (2022). Long-term effect of some heavy metal combinations on growth and chemical composition of some ornamental shrubs common in Egypt No – Common oleander (Nerium oleander L.). Applied Ecology and Environmental Research, 20(5), 4351-4361. http://dx.doi.org/10.15666/aeer/2005_43514361
  28. Pasalari, H., Farzadkia, M., Gholami, M., & Emamjomeh, M.M. (2019). Management of landfill leachate in Iran: valorization, characteristics, and environmental approaches. Environmental Chemistry Letters, 17, 335-
  29. Peng, D., Shafi, M., Wang, Y., Li, S., Yan, W., Chen, J., & Ye, Liu. (2015). Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys Environmental Science and Pollution Research International, 22(19), 14983–14992. https://doi.org/10.1007/s11356-015-4692-3 4692-3
  30. Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4
  31. Rafati, M., Siahpoor, N., Mohammadi Roozbahani, M., & Heidari, M. (2018). Absorbability and translocation of Nickle from soil using sunflower plant (Helianthus annuus). Journal of Advances in Environmental Health Research, 6, 234- 239.
  32. Salehi, A. (2019). Phytoremediation: A remediation technology of heavy metal contaminated soils. Human & Environment, 49, 27-42. (In Persian with English abstract)
  33. Sepahvand, H., Feizian, M., Mirzaeitalarposhti, R., & Mueller, T. (2020). Comparison of different methods for the determination of organic carbon in calcareous soils under different land uses of Lorestan province. Journal of Water and Soil, 34(1), 169-177. (In Persian with English abstract)
  34. Sharifi, Kh., Rahnavard, A., Saeb, K., Farid Fahimi, Gh., & Tavana, A. (2022). Capacity of nettle (Urtica dioica L.) in adsorption of heavy metals (Pb, As, Cd, Ni) from Tonekabon landfill leachate. Journal of Environmental Science and Technology, 24(2), 17-30. (In Persian with English abstract)
  35. Solgi, E., Yazdanyar, R., & Taghizadeh, M. (2020). Assessment of phytoremediation potential of Alyssum maritimum in remediation of lead-contaminated soil. Scientific Journal of School of Public Health and Institute of Public Health Research, 17(4), 363-372. (In Persian with English abstract)
  36. Vaverková, M., & Adamcová. D. (2014). Heavy metals uptake by select plant species in the Landfill area of Štěpánovice, Czech Republic. Polish Journal of Environmental Studies, 6(23), 2265-2269. https://doi.org/10.15244/pjoes/26106.
  37. Vongdala, N., Tran, H.D., Dang Xuan, T., Teschke, R., & Dang Khanh, T. (2019). Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. International Journal of Environmental Research and Public Health, 16(22), 1-13. https://doi.org/10.3390/ijerph16010022
  38. Water and soil office, Vice President of Human Environment, (2018). Quality standards of soil resources and its guidelines. Department of Environment publication, 164 pages. (In Persian)
  39. Zahedi, S., Akbarzadeh, A., Rafati, M., Banaee, M., Sepehri Moghadam, H., & Raeisi, H. (2013). Biochemical responses of juvenile European sturgeon, (Huso huso) to a sub-lethal level of copper and cadmium in freshwater and brackish water environments. Journal of Environmental Health Science and Engineering, 11(26), 1-8. https://doi.org/10.1186/2052-336X-11-26.
  40. Zahedi, S., Mirvaghefi, A., Rafati, M., Rafiee, Gh., Mojazi Amiri, B., Hedayati, M., Makhdoomie, Ch., & Zarei Dangesarakie, M. (2014). The effect of sub-lethal exposure to copper and the time course of recovery in clean water on biochemical changes in juvenile fish (Acipenser persicus). Marine and Freshwater Behavior and Physiology, 479(4), 253–264. http://dx.doi.org/10.1080/10236244.2014.926077
  41. Zhang, J., Shi, Z., Ni, Sh., Wang, X., Liao, Ch., & We., F. (2021). Source Identification of Cd and Pb in Typical Farmland Topsoil in the Southwest of China: A Case Study. Sustainability, 13(7), 1-11. https://doi.org/10.3390/su13073729

 

CAPTCHA Image