طاهر رجایی؛ رقیه رحیمی بنماران
چکیده
کنترل کیفیت آب رودخانه کرج، به عنوان یکی از مهم ترین منابع تأمین کننده آب از اهمیت بسزایی برخوردار است. پیش بینی پارامترهای کیفی آب، ابزاری سودمند در جهت مدیریت منابع آب می باشد. در این تحقیق، عملکرد مدلهای شبکه عصبی مصنوعی (ANN)، مدل ترکیبی شبکه
عصبی–موجک (WANN) ورگرسیون خطی چند متغیره (MLR)، در پیش بینی یک ماه آینده یون نیترات و کلراید ...
بیشتر
کنترل کیفیت آب رودخانه کرج، به عنوان یکی از مهم ترین منابع تأمین کننده آب از اهمیت بسزایی برخوردار است. پیش بینی پارامترهای کیفی آب، ابزاری سودمند در جهت مدیریت منابع آب می باشد. در این تحقیق، عملکرد مدلهای شبکه عصبی مصنوعی (ANN)، مدل ترکیبی شبکه
عصبی–موجک (WANN) ورگرسیون خطی چند متغیره (MLR)، در پیش بینی یک ماه آینده یون نیترات و کلراید ایستگاه ورودی آبگیر بیلقان واقع در رودخانه کرج، مورد ارزیابی قرار گرفت. برای این منظور از یک دوره آماری جهت ورودی مدل ها استفاده شد. در مدل ترکیبی WANN سری های زمانی واقعی دبی و پارامتر کیفی مورد نظر (نیترات و کلراید) توسط آنالیز موجک در سطوح مختلف تجزیه شده و به عنوان ورودی ANN به کار گرفته شد. کارایی مدل ها با ضریب تببین (E) و ریشه میانگین مربعات خطا (RMSE) ارزیابی شدند. نتایج حاکی از دقت بالای مدل ترکیبی شبکه
عصبی- موجکی نسبت به دو مدل دیگر بوده است؛ بهطوریکه مدل ترکیبی شبکه عصبی –موجکی قادر بود میزان RMSE را برای یون نیترات در مقایسه با مدل شبکه عصبی و رگرسیون خطی چند متغیره به ترتیب به مقدار 13/30 درصد و 89/71 درصد و برای یون کلراید، به اندازه 3/31 درصد و 1/57 درصد بهبود بخشد. در ادامه، توانایی هر سه مدل، برای پیش بینی نقاط پیک سری زمانی بررسی شد که مدل ترکیبی WANNپیش بینی بهتری را در مقایسه با دو مدل دیگر در برداشت.
حمزه میر؛ احمد غلامعلی زاده آهنگر؛ اسماء شعبانی
چکیده
فسفر به عنوان یک عنصر ضروری در تولید محصولات کشاورزی دارای اهمیت است. از سوی دیگر توانایی آن در القای کمبود عناصر کم-مصرف ضروری و اثرات منفی آن بر محیط زیست، سبب توجه بیشتر به این عنصر شده است. از آنجا که ویژگی های خاک از عوامل مهم در واکنش فسفر در خاک هستند، پژوهش حاضر جهت بررسی و تعیین مهم ترین ویژگی های خاک موثر بر فراهمی فسفر با استفاده ...
بیشتر
فسفر به عنوان یک عنصر ضروری در تولید محصولات کشاورزی دارای اهمیت است. از سوی دیگر توانایی آن در القای کمبود عناصر کم-مصرف ضروری و اثرات منفی آن بر محیط زیست، سبب توجه بیشتر به این عنصر شده است. از آنجا که ویژگی های خاک از عوامل مهم در واکنش فسفر در خاک هستند، پژوهش حاضر جهت بررسی و تعیین مهم ترین ویژگی های خاک موثر بر فراهمی فسفر با استفاده از روش های رگرسیونی و شبکههای عصبی مصنوعی در دشت سیستان انجام شد. بدین منظور تعداد 200 نمونه خاک از اراضی دشت سیستان تهیه و مقادیر فسفر قابل جذب و سایر پارامترهای فیزیکو شیمیایی آن اندازه گیری گردید. نتایج بیانگر آن است که روش شبکه عصبی دارای دقت بیشتری در برآورد فسفر قابل جذب نسبت به روش رگرسیون چند متغیره خطی میباشد، به گونهای که شبکه عصبی پرسپترون چند لایه با آرایش 1-6-4 نزدیک به 90 درصد از تغییرات فسفر قابل جذب را با استفاده از برخی ویژگیهای خاک (درصد رس، ماده آلی، کربنات کلسیم و اسیدیته) پیشبینی نمود ولی معادله رگرسیون حاصله تنها توانست 43 درصد از تغییرات فسفر را توجیه کند. نتایج کمی کردن اهمیت متغیرها به روش وزن ارتباطی نشان داد عامل pH بیشترین مشارکت را در تغییرپذیری فسفر در منطقه مورد مطالعه دارد. به عبارت دیگر، مقادیر بالای pH مهم ترین عامل محدود کننده فراهمی فسفر در خاک های دشت سیستان است.
محمودرضا طباطبائی؛ کاکا شاهدی؛ کریم سلیمانی
چکیده
برای مطالعات کیفی و کمی منابع آب، برآورد بار رسوب معلق رودخانهها بسیار مهم است. بار رسوب معلق بطور معمول با اندازهگیری مستقیم غلظت رسوب معلق یا با بکارگیری منحنی سنجه رسوب انجام میشود. اندازهگیری به روش مستقیم، اگر چه مطمئنترین روش اندازهگیری غلظت رسوبات معلق بوده، با این همه، این روش، اغلب زمان بر و پر هزینه است. همچنین ...
بیشتر
برای مطالعات کیفی و کمی منابع آب، برآورد بار رسوب معلق رودخانهها بسیار مهم است. بار رسوب معلق بطور معمول با اندازهگیری مستقیم غلظت رسوب معلق یا با بکارگیری منحنی سنجه رسوب انجام میشود. اندازهگیری به روش مستقیم، اگر چه مطمئنترین روش اندازهگیری غلظت رسوبات معلق بوده، با این همه، این روش، اغلب زمان بر و پر هزینه است. همچنین دقت منحنی سنجه رسوب به دلیل برآورد زیاد (در مقادیر کم رسوب رودخانه) یا برآورد کم (در مقادیر زیاد رسوب رودخانه) پائین بوده و لذا از کارائی لازم برخوردار نمیباشد. در این تحقیق، به منظور بررسی امکان تخمین غلظت رسوبات معلق رودخانهای با استفاده از انعکاسات تصاویر ماهوارهای، همبستگی میان بازتاب طیفی باندهای تصاویر سنجنده مودیس (باند قرمز و مادون قرمز) و غلظت رسوبات معلق رودخانه کارون در ایستگاه هیدرومتری ملاثانی در یک دوره زمانی 9 ساله (سال های 1382 تا 1390) مورد بررسی قرار گرفت. در این رابطه از دو مدل آماری (رگرسیون خطی یک متغیره) و شبکه عصبی مصنوعی (پیشخور با الگوریتم آموزش پس انتشار خطا) استفاده شد. ارزیابی مدلهای رگرسیونی و شبکه عصبی مصنوعی نشان داد که مدل شبکه عصبی مصنوعی با ضریب تعیین (R2) 89/0 و ریشه مربع خطا RMSE)) 122 میلیگرم بر لیتر کارائی بیشتری در مقایسه با مدل رگرسیونی با ضریب تعیین 49/0 و ریشه مربع خطا 204 میلیگرم بر لیتر داشته است. نتایج تحقیق نشان داد که از تصاویر سنجنده مودیس به همراه شبکه عصبی مصنوعی میتوان، در تخمین و پایش غلظت رسوبات معلق روزانه رودخانههای بزرگ استفاده نمود.