دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه صنعتی اصفهان

چکیده

آلودگی زدایی آبهای آلوده به فلزات سنگین، نیاز زیادی به توسعه جاذبهای کارآمد برای این آلاینده ها ایجاد کرده است. این مطالعه، جذب سرب (Pb) بوسیله رسهای سپیولیت (Sep) و بنتونیت (Bent) طبیعی و اصلاح شده با سورفکتانت کاتیونی ستیل‌تری‌متیل آمونیوم (CTMA+) برمید را گزارش می کند. رسهای طبیعی و اصلاح شده با کاتیونهای آلی (رسهای آلی) با استفاده از روشهای دستگاهی × XRF، XRD، FTIR و SEM مشخصه یابی شدند. مطالعات جذب سرب در سیستم بسته انجام شد و تأثیر پارامترهای زمان تماس و غلظت اولیه سرب بر جذب سرب بوسیله جاذبها مورد بررسی قرار گرفت. حداکثر جذب سرب بوسیله سپیولیت (Sep)، سپیولیت اصلاح شده (CTMA-Sep)، بنتونیت (Bent) و بنتونیت اصلاح شده (CTMA-Bent) به ترتیب 26/83، 36/71، 25/56 و mg g-1 37 بدست آمد. مدل های لانگمویر و فروندلیچ بر داده های آزمایش جذب برازش داده شد. مدل فروندلیچ فرایند جذب سرب بوسیله جاذب ها را بهتر توصیف نمود. سرعت جذب سرب بوسیله رسهای اصلاح شده آهسته‌تر از رسهای طبیعی بدست آمد. سینتیک جذب سرب بوسیله جاذبها با استفاده از مدل های شبه مرتبه اول، شبه مرتبه دوم، الوویچ و پخشیدگی درون ذرّه‌ای مورد بررسی قرار گرفت. فرایند جذب سرب بوسیله رسهای آلی از مدل پخشیدگی درون ذرّه ای تبعیت نمود. مدل های شبه مرتبه دوم و الوویچ به ترتیب داده‌های سینتیک جذب سرب بوسیله سپیولیت و بنتونیت طبیعی را بهتر توصیف نمودند. نتایج نشان داد که اصلاح سپیولیت و بنتونیت با سورفکتانت کاتیونی CTMA سبب کاهش ظرفیت جذب آنها برای سرب می شود.

کلیدواژه‌ها

عنوان مقاله [English]

Performance of Cationic Surfactant Modified Sepiolite and Bentonite in Lead Sorption from Aqueous Solutions

نویسندگان [English]

  • H.R. Rafiei
  • M. Shirvani
  • T. Behzad

sfahan University of Technology

چکیده [English]

The remediation of soils and water contaminated with heavy metals generate a great need to develop efficient adsorbents for these pollutants. This study reports the sorption of lead (Pb) by bentonite (Bent), and sepiolite (Sep), that were modified with cetyltrimethyl ammonium (CTMA+) organic cations. The natural and surfactant modified clays (organo-clays) were characterized with some instrumental techniques including XRF, XRD, FTIR and SEM. Sorption studies were performed in a batch system, and the effects of various experimental parameters including contact time and initial Pb concentration were evaluated upon the Pb sorption onto sorbents. Maximum sorption of Pb was found to be, 83.26, 71.36, 56.25 and 37 mg g-1 for Sep, CTMA-Sep, Bent and CTMA-Bent adsorbents, respectively. The Pb sorption data were fitted to both the Langmuir and Freundlich models. The Freundlich model represented the sorption process better than the Langmuir model. Lead sorption rate was found to be considerably slower for organo-clays than that for unmodified clays. Sorption kinetics was evaluated by pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models. The sorption processes of organo-clays followed intraparticle diffusion kinetics. The results showed that the cationic surfactant modified bentonite and sepiolite sorbed less Pb than the unmodified clays.

کلیدواژه‌ها [English]

  • Pb sorption
  • Langmuir isotherm
  • CTMA Surfactant
  • bentonite
  • Sepiolite
- سعدانی م.، غلامی م.، غدیری س.، شجاع ا. و ابویی مهریزی ا. 1392. بررسی ایزوترم و سینتیک جذب سرب و کادمیم از شیرابه زباله توسط جاذب های طبیعی. مجله تحقیقات نظام سلامت 9 (10): 1107-1094.
2- Ali I.O., Hassan A.M., Shaaban S.M., Soliman K.S. 2011. Synthesis and characterization of ZSM-5 zeolite from rice husk ash and their adsorption of Pb2+ onto unmodified and surfactant-modified zeolite. Separation and Purification Technology, 83: 38–44.
3- Bakhtiary S., Shirvani M., and Shariatmadari H. 2013. Characterization and 2,4-D adsorption of sepiolite nanofibers modified by N-cetylpyridinium cations. Microporous and Mesoporous Materials, 168:30–36.
4- Bartelt-Hunt S.L., Burns S.E., and Smith J.A. 2003. Nonionic organic solute sorption onto two organobentonites as a function of organic-carbon content. Journal of Colloid and Interface Science, 266:251–258.
5- Bergaya F., Theng B.K.G., and Lagaly G. 2006. Handbook of Clay Science. Elsevier, Amsterdam.
6- Boparai H.K., Joseph M., and O’Carroll D.M. 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186:458–465.
7- Celis R., Hermosın M.C., and Cornejo J. 2000. Heavy metal adsorption by functionalized clays. Environmental Science and Technology. 34:4593–4599.
8- Chen H. and Zhao J. 2009. Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption, 15:381–389.
9- Chen H., Zhao Y., and Wang A. 2007. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials, 149:346–354.
10- Copello G.J., Diaz L.E., DallOrto V.C. 2012. Adsorption of Cd(II) and Pb(II) onto a one step-synthesized polyampholyte: Kinetics and equilibrium studies. Journal of Hazardous Materials, 217– 218:374–381.
11- Cortes-Martınez R., Martınez-Miranda V., Solache-Rıos M., and Garcıa-Sosa I. 2004. Evaluation of Natural and Surfactant-Modified Zeolites in the Removal of Cadmium from Aqueous Solutions. Separation Science and Technology, 39:2711– 2730.
12- Cruz-Guzman M., Celis R., Hermosın M.C., Koskinen W.C., Nater E.A., and Cornejo J. 2006. Heavy Metal Adsorption by Montmorillonites Modified with Natural Organic Cations. Soil Science Society of America Journal, 70:215–221.
13- Dinu M.V., and Dragan E.S. 2010. Evaluation of Cu2+,Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: Kinetics and isotherms. Chemical Engineering Journal, 160:157–163.
14- Gajowiak A., Gładysz-Płaska A., Sternik D., Pikus S., Sabah E., and Majdan M. 2013. Sorption of uranyl ions on organosepiolite. Chemical Engineering Journal, 219:459–468.
15- Giannakas A., Spanos C.G., Kourkoumelis N., Vaimakis T., and Ladavos, A. 2008. Preparation, characterization and water barrier properties of PS/organo-montmorillonite nanocomposites. European Polymer Journal, 44:3915–3921.
16- Gładysz-Płaska A., Majdan M., Pikus S., and Sternik D. 2012. Simultaneous adsorption of chromium (VI) and phenol on natural red clay modified by HDTMA. Chemical Engineering Journal, 179:140– 150.
17- Gunay A., Arslankaya E., and Tosun I. 2007. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146:362–371.
18- Gupta S.S., and Bhattacharyya K.G. 2006. Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials B, 128:247–257.
19- Humelnicu D., Dinu M.V., and Dragan E.S. 2011. Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. Journal of Hazardous Materials, 185:447–455.
20- Jiang M., Wang Q., Jin X., and Chen Z. 2009. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay. Journal of Hazardous Materials, 170:332–339.
21- Jović-Jovičić N., Milutinović –Nikolić A., Banković P., Mojović Z., and Žunić M. 2010. Organo-inorganic bentonite for simultaneous adsorption of Acid Orange 10 and lead ions. Applied Clay Science, 47:452–456.
22- Karatas M. 2012. Removal of Pb(II) from water by natural zeolitic tuff: Kinetics and thermodynamics. Journal of Hazardous Materials, 199–200:383–389.
23- Koswojo R., Utomo R.P., Ju Y., Ayucitra A. 2010. Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 48:81–86.
24- Lee S.M., and Tiwari D. 2012. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science. 59-60:84– 102.
25- Liang X., Xu Y., Wang L., Sun Y., Lin D., Sun Y., Qin X., and Wan Q. 2013. Sorption of Pb2+ on mercapto functionalized sepiolite. Chemosphere, 90:548–555.
26- Liu B., Lv X., Meng X., Yu G., and Wang D. 2013. Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chemical Engineering Journal, 220:412–419.
27- Mishra A.K., Allauddin S., Narayan R., Aminabhavi T.M., Raju K.V.S.N. 2012. Characterization of surface-modified montmorillonite nanocomposites. Ceramics International, 38:929–934.
28- Nadeem M., Shabbir M., Abdullah M.A., Shah S.S., and McKay G. 2009. Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chemical Engineering Journal, 148:365–370.
29- Nadeem M., Mahmood A., Shahid S.A., Shah S.S., Khalid A.M., and McKay G. 2006. Sorption of lead from aqueous solution by chemically modified carbon adsorbents. Journal of Hazardous Materials B, 138:604–613.
30- Niu Y., Qu R., Sun C., Wang C., Chen H., Ji C., Zhang Y., Shao X., and Bu F. 2013. Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers. Journal of Hazardous Materials, 244– 245:276– 286.
31- Oyanedel-Craver V.A., and Smith J.A. 2006. Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. Journal of Hazardous Materials B, 137:1102–1114.
32- Oyanedel-Craver V.A., and Smith J.A. 2007. Simultaneous sorption of benzene and heavy metals onto two organoclays. Journal of Colloid and Interface Science, 309:485–492.
33- Ozcan A.S., Gok O., and Ozcan A. 2009. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. Journal of Hazardous Materials, 161:499–509.
34- Özcan A.S., and Gök Ö. 2012. Structural characterization of dodecyltrimethylammonium (DTMA) bromide modified sepiolite and its adsorption isotherm studies. Journal of Molecular Structure, 1007:36–44.
35- Ozdes D., Duran C., and Senturk H.B. 2011. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management, 92:3082-3090.
36- Randelovic M., Purenovic M., Zarubica A., Purenovic J., Matovic B., and Momcilovic M. 2012. Synthesis of composite by application of mixed Fe, Mg (hydr)oxides coatings onto bentonite –A use for the removal of Pb(II) from water. Journal of Hazardous Materials, 199–200:367– 374.
37- Rhoads J.W. 1986. Cation exchange capacity. In: Page, C.A. (Ed.), Methods of Soil Analysis Part 2. ASA, Madison, WI, pp. 149–158.
38- Sheikhhosseini A., Shirvani M., and Shariatmadari H. 2013. Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma, 192:249–253.
39- Su J., Huang H., Jin X., Lu X., and Chen Z. 2011. Synthesis, characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution. Journal of Hazardous Materials, 185:63–70.
40- Thamilarasu P., Sivakumar P., and Karunakaran K. 2011. Removal of Ni(II) from aqueous solutions by adsorption onto Cajanus Cajan L Milps seed shell activated carbon. Indian Journal of Chemical Technology, 18:414-420.
41- Unuabonah E.I., Adebowale K.O., and Olu-Owolabi B.I. 2007. Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. Journal of Hazardous Materials, 144:386–395.
42- Wan Ngah W.S., Teong L.C., Toh R.H., and Hanafiah M.A.K.M. 2012. Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: Adsorption, desorption and fixed bed column studies. Chemical Engineering Journal, 209:46–53.
43- Wang L., and Wang A. 2008. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. Journal of Hazardous Materials, 160:173–180.
44- Yazdankhah A., Moradi S.E., Amirmahmoodi S., Abbasian M., and Esmaeily Shoja S. 2010. Enhanced sorption of cadmium ion on highly ordered nanoporous carbon by using different surfactant modification. Microporous and Mesoporous Materials, 133:45–53.
45- Yoo J.Y., Choi J., Lee T., and Park J.W. 2004. Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water, Air, and Soil Pollution, 154:225–237.
46- Zhang H., Tong Z., Wei T., and Tang Y. 2012. Sorption characteristics of Pb(II) on alkaline Ca-bentonite. Applied Clay Science, 65– 66:21–23.
47- Zhu L., Ruan X., Chen B., and Zhu R. 2008. Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation. Chemosphere,
CAPTCHA Image