مقایسه عملکرد مدل های هوش مصنوعی در تخمین پارامترهای کیفی آب رودخانه در دوره های کم آبی و پرآبی

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه ارومیه

چکیده

وقوع متناوب دوره های کم آبی و پرآبی درحوضه آبریز زرینه رود علاوه بر تأثیر روی وضعیت کمی آب های سطحی، باعث تغییراتی در کیفیت آب این حوضه شده است. لذا، مدل بندی و پیش بینی پارامترهای کیفی آب رودخانه زرینه رود در دوره های کم آبی و پرآبی، یکی از ضرورت های تحقیقاتی در این رودخانه پرآب شمال غرب ایران بوده است. در این مطالعه، روش های شبکه های عصبی مصنوعی به ازای پنج الگوریتم آموزشی مختلف و سامانه استنتاجی عصبی-فازی تطبیقی مبتنی بر مدل دسته بندی تفریقی، جهت تخمین میزان جامدات محلول TDS به کار گرفته شدند. بدین منظور از داده های کیفیت آب هفت ایستگاه هیدرومتری در حوضه آبریز مذکور با طول دوره آماری 18 ساله (1389-1372) استفاده گردید. ابتدا دوره مطالعاتی مذکور بر اساس میزان جریان در رودخانه به دو دوره کم آبی و پرآبی تفکیک شده، سپس در یک آنالیز اولیه آماری، پارامترهای مؤثر اصلی در تخمین TDS تعیین و برای مدل بندی استفاده گردید. برای مدل بندی 75 درصد داده ها برای کالیبره کردن و 25 درصد برای ارزیابی مدل استفاده شده است. ارزیابی عملکرد مدل های به کار رفته بر اساس آزمون های آماری مختلف، ضریب همبستگی، ریشه میانگین مربعات خطا و میانگین قدر مطلق خطا انجام گرفت. نتایج حاصل حاکی از عملکرد قابل قبول هر دو روش شبکه های عصبی مصنوعی با الگوریتم آموزشی لونبرگ-مارگارت و سامانه استنتاجی عصبی-فازی تطبیقی در دوره های کم آبی و پرآبی بود. مقایسه عملکرد روش های به کار گرفته شده، نشان داد که عملکرد روش عصبی-فازی تطبیقی در هر دو دوره مطالعاتی بهتر از شبکه های عصبی مصنوعی می‏باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparing the Performance of Artificial Intelligence Models in Estimating Water Quality Parameters in Periods of Low and High Water Flow

نویسندگان [English]

  • majid montaseri
  • S. Zaman Zad Ghavidel
Urmia University
چکیده [English]

Introduction: A total dissolved solid (TDS) is an important indicator for water quality assesment. Since the composition of mineral salts and discharge affects the TDS of water, it is important to understand the relationships of mineral salts composition with TDS.
Materials and Methods: In this study, methods of artificial neural networks with five different training algorithm,Levenberg-Marquardt (LM), Scaled Conjugate Gradient (SCG), Fletcher Conjugate Gradient (CGF), One Step Secant (OSS) and Gradient descent with adaptive learning rate backpropagation(GDA)algorithm and adaptive Neurofuzzy inference system based on Subtractive Clustering were used to model water quality properties of Zarrineh River Basin, to be developed in total dissolved solids prediction. ANN and ANFIS program code were written in MATLAB language. Here, the ANN with one hidden layer was used and the hidden nodes’ number was determined using trial and error. Different activation functions (logarithm sigmoid, tangent sigmoid and linear) were tried for the hidden and output nodes. Therefore, water quality data from seven hydrometer stationswere used during the statistical period of 18years (1993-2010).In this research, the study period was divided into two periods of dry and wet flow, and then in a preliminary statistical analysis, the main parameters affecting the estimation of the TDS are determined and isused for modeling. 75% of data are used for remaining and 25% of the data are used for evaluation of the model, randomly. In this paper, three statistical evaluation criteria, correlation coefficient (R), the root mean square error (RMSE) and mean absolute error (MAE) were used to assess models’ performances.
Results and Discussion: By applying correlation coefficients method between the parameters of water quality and discharge with total dissolved solid in two periods, wet and dry periods, the significant (at 95% level) variables entered into the model were Q, HCO3., Cl, So4, Ca, Na and Mg. The optimal ANN (LM) architecture used in this study consists of an input layer with seven inputs, one hidden and output layer with two and five neurons for dry and wet periods, respectively. Similar ANN(LM), ANFIS-SC model had the best performance. It is clear that the ANFIS with 0/72 and 0/58 radii value has the highest R and the lowest RMSE for dry and wet periods, respectively. Comparing the ANFIS-SC estimations with the measured data for the test stage demonstrates a high generalization capacity of the model, with relatively low error and high correlation. From the scatter plots it is obviously seen that the ANFIS-SC predictions are closer to the corresponding measured TDS than other models in two periods. As seen from the best straight line equations (assume the equation as y=ax) in the scatter plots that the coefficient for ANFIS-SC is closer to 1 than other models. In addition ANFIS-SC performancedwith the correlation coefficients in dry and wet periods, respectively 0.975 , 0.969 and with Root-mean-square errors, respectively 34.41 , 23.85 in order to predict dissolved solids (TDS) in the rivers of Zarrineh River Basin. The obtained results showed the efficiency of the applied models in simulating the nonlinear behavior of TDS variations in terms of performance indices. The results are also tested by using t test for verifying the robustness of the models at 99% significance level. Comparison results indicated that the poorest model in TDS simulation was ANN-GDAin dry and wet periods, especially in test period. The observed relationship between residuals and model computed TDS values shows complete independence and random distribution. It is further supported by the respective correlations for ANFIS-SC models (R2 = 0.0012 for dry period and R2 = 0.0214 for wet period) which are negligible small. Plots of the residuals versus model computed values can be more informative regarding model fitting to a data set. If the residuals appear to behave randomly it suggests that the model fits the data well. On the other hand, if non- random distribution is evident in the residuals, the model does not fit the data adequately. On the base of these results, we propose ANFIS-SC and ANN (LM) methods as effective tools for the computation of total dissolved solids in river water, respectively.
Conclusion: It can be concluded that the ANN with Levenberg-Marquardt training algorithm and ANFIS-SC models can be considered as promising tools for forecasting TDS values, based on water quality parameters. With attention to the aim of current research that is presenting the feasibility of artificial intelligence techniques for modeling TDS values, it is notable that the results presented in this paper are for research purpose and applying the abstained results for real-world needs some complicated steps and building artificial intelligences methods, based on complete data and parameters maybe affected the TDS values

کلیدواژه‌ها [English]

  • Adaptive Neuro Fuzzy Inference System
  • Artificial neural network
  • Dissolved Solids
  • Zarrineh River
1- Ahmadi P. 2011. Optimizing utilization of Zarrineh River irrigation and drainage network using genetic algorithm. Master's Thesis, Urmia University.
2- Caudill M. 1987. Neural networks primer: Part I. AI Expert, 2(12): 46-52.
3- Chang F.J., and Chang Y.T. 2006. Adaptive neuron-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 29(1):1-10.
4- Chang F.J., and Chen Y.C. 2001. Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology, 245:153-164.
5- Chiu S.L. 1995.Extracting fuzzy rules for pattern classification by cluster estimation. In: The 6th Internat. Fuzzy Systems Association World Congress, pp. 1–4.
6- Cobaner M. 2011.Evapotranspiration estimation by two different neuro-fuzzy inference systems. Journal of Hydrology, 398: 292–302.
7- Coulibaly P., Anctil F., Aravena R., and Bobee B. 2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 37(4): 885–896.
8- Dadfar S., Khaligi Sigarodi Sh., Shah Bandari R.V., and Kamrani F. 2010. The relationship between chemical water quality and river discharge parameters (Case Study: Taleghan). National Conference of clean water approach, Tehran.
9- Farbodnam N., Ghorbani M.A. and Alami M. 2009. River Flow Prediction Using Genetic Programming (Case Study: Lighvan River Watershed). Journal of Water and Soil, 19(1): 107-123.
10- Goyal M.K., and Ojha C.S.P. 2011. Estimation of scour downstream of a ski-jump bucket using support vector and M5 model tree. Water Resources Management,25 (9): 2177–2195.
11- Guven A. 2009.Linear genetic programming for time-series modeling of daily flow rate. Journal of Earth System Science, 118 (2): 137–146.
12- Guven A., and Talu N.E. 2010. Gene-expression programming for estimating suspended sediment in Middle Euphrates Basin. Turkey. CLEAN-Soil Air Water, 38(12): 1159–1168.
13- Güldal V., and Tongal H. 2010. Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in Egirdir Lake level forecasting. Water Resources Management, 24(1): 105–128.
14- Hesami Rostami R., Afshar A., and Mosavi J. 2005. Flood forecasting model using neuro-fuzzy inference system and compare it with regression comparative examples with solutions: Karkhe River. The First Annual Conference of Water Resources Management of Iran, Tehran.
15- Hrdinka T., Novicky O., Hanslık E., and Riede M. 2012. Possible impacts of floods and droughts on water quality. Journal of Hydro-environment Research, 145-150.
16- Jain SK., Das A., and Srivastava D.K. 1999. Application of ANN for reservoir inflow prediction andoperation, Journal of Water Resources Planning and Management ASCE, 125(5): 263-271.
17- Jang J.S.R.1993 ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23 (3): 665–685.
18- Karimi S., Kisi O., Shiri J., and Makarynskyy O. 2013. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Computers & Geosciences, 52: 50-59.
19- Kisi O. 2006. Daily pan evaporation modeling using a neuro-fuzzy computing technique. Journal of Hydrology, 329: 636– 646.
20- Kisi O. 2007. Evapotranspiration modeling from climate data using a neural computing technique. Hydrological Processes, 21(6): 1925–1934.
21- Kisi O., Nia A.M., Gosheh M.G., Tajabadi M.R.J., and Ahmadi A. 2012. Intermittent streamflow forecasting by using several data driven techniques. Water Resources Management, 26(2): 457–474.
22- Kisi O., Shiri J., and Tombul M. 2013. Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51: 108–117.
23- Kumar M., Raghuwanshi N.S., Singh R., Wallender W.W., and Pruitt W.O. 2002. Estimating evapotranspiration using artificial neural networks. Journal of Irrigation and Drainage Engineering ASCE, 128(4): 224–233.
24- Lashnizand M., Pavaneh B., and Bazgir M. 2010. The effects of wet and dry periods on the quality of surface water of Kashkan basin. Journal of Physical Geography, 3(8):111-125.
25- Legates D.R., and Mc Cabe G.J. 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1): 233-241.
26- Misaghy F., and Mohammadi K. 2004. Prediction of Zayandehrood river water quality using Artificial Neural Networks. 2th National Conference of soil and water resources, Shiraz University.
27- Najah A., Elshafie A., Karim O., and Jaffar O. 2009. Prediction of Johor river water quality parameters using artificial neural networks. European Journal of Scientific Research, 28: 422-35.
28- Park J.H., Duan L., Kim B.J., Mitchell M., and Shibata H. 2010. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environment International, 212-225.
29- Pour-Ali Baba A., Shiri J., Kisi O., Fakheri Fard A., Kim S., and Amini A. 2013. Estimating daily reference evapotranspiration using available and estimated climatic data by adaptiveneuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrology Research, 44.1: 131-146.
30- Saadati N., Hoseynizare N., and Gandomkar P. 2006. Study on quality of Maron-Jarahi river water using water quality indexes (drinking, Agriculture and WQI). 7th International Seminar on River Engineering, Shadid Chamran Ahvaz University.
31- Sanikhani H., and Kisi O. 2012. River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches. Water Resources Management, 26: 1715–1729.
32- Sani Khani H., Nikpoor M., and Dinpazhouh Y. 2011. Compareing the performance of Grid partitioning and Subtractive clustering methods in estimateing the pan evaporation. The first National Conference on Agricultural Meteorology and Water Management. College of Agriculture and Natural Resources, Tehran University.
33- Sengorur B., Dogan E., Koklu R., and Samandar A. 2006. Dissolved oxygen estimation using artificial neural network for water quality control. Fresenius Environmental Bulletin, 15: 1064–1067.
34- Sighn K.P., Basant A., Malik A., and Jain G. 2009. Artificial neural network modeling of the river water quality-A case study. Ecological Modelling, 220: 888–895.
35- Wu H.J., Lin Z.Y., and Guo S.L. 2000. The application of artificial neural networks in the resources and environment. Resources and Environment in the Yangtze Basin, 9: 237–241 (inChinese).
36- Xiang S.L., Liu Z.M., and Ma L.P. 2006. Study of multivariate linear regression analysis model for ground water quality prediction. Guizhou Science, 24: 60–62.