ناپویاسازی کادمیم در خاک با استفاده از نانوذرات مگنتیت تثبیت‌شده با سدیم دودسیل سولفات

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 دانشگاه فسا

3 دانشگاه شیراز

چکیده

کادمیم یکی از فلزات سنگین است که به خاطر اثرات سمی بالقوه آن بر فعالیت و ترکیب موجودات زنده خاک، در چند دهه گذشته بسیار مورد توجه قرار گرفته است. تثبیت فلزات سنگین با استفاده از اصلاح کننده ها، روشی ساده و سریع برای کاهش گسترش آلودگی فلزات سنگین محسوب می شود. هدف از این پژوهش سنتز نانوذرات مگنتیت (Fe3O4) تثبیت شده با سدیم دودسیل سولفات (SDS) و بررسی اثر درصدهای مختلف آن (از صفر تا 10 درصد) بر شکل های مختلف کادمیم در خاک آلوده شده با 1000 میلی گرم کادمیم بر کیلوگرم با روش عصاره گیری دنباله ای تسیر بود. نتایج نشان داد غلظت کادمیم در شکل های محلول و کربناتی با افزایش درصد نانوذرات کاهش یافت. بیشترین میزان کاهش غلظت کادمیم در تیمار 10 درصد نانوذره (80 درصد در شکل محلول و 28 درصد در شکل کربناتی نسبت به تیمار شاهد) مشاهده شد. غلظت کادمیم متصل به شکل اکسیدها با افزایش درصد نانوذرات افزایش یافت، به طوری که در تیمار 10 درصد نانوذره به سه برابر تیمار شاهد رسید. غلظت کادمیم در شکل های تبادلی و باقی مانده با تغییر درصد نانوذرات تغییرات چندانی نداشت. همچنین، تحرّک و فراهمی زیستی کادمیم در خاک در تیمار 10 درصد نانوذره، 17 درصد کاهش یافت. بنابراین، می توان نتیجه گیری کرد که نانوذرات مگنتیت تثبیت شده باعث کاهش حلالیت کادمیم در خاک و کاهش فراهمی زیستی این فلز می گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Cadmium Immobilization in Soil using Sodium Dodecyl Sulfate Stabilized Magnetite Nanoparticles

نویسندگان [English]

  • Ahmad Farrokhian Firouzi 1
  • Mohammad Javad Amiri 2
  • Hosein Hamidifar 3
  • Mehdi Bahrami 2
1 Shahid Chamran University
2 Fasa University
3 Shiraz University
چکیده [English]

Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd) as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil organism activity and compositions. Cadmium is a soil pollutant of no known essential biological functions, and may pose threats to soil-dwelling organisms and human health. Soil contamination with Cd usually originates from mining and smelting activities, atmospheric deposition from metallurgical industries, incineration of plastics and batteries, land application of sewage sludge, and burning of fossil fuels. Heavy metal immobilization using amendments is a simple and rapid method for the reduction of heavy metal pollution. One way of the assessment of contaminated soils is sequential extraction procedure. Sequential extraction of heavy metals in soils is an appropriate way to determine soil metal forms including soluble, exchangeable, carbonate, oxides of iron and manganese, and the residual. Its results are valuable in prediction of bioavailability, leaching rate and elements transformation in contaminated agricultural soils.
Materials and Methods The objective of this study was to synthesize magnetite nanoparticles (Fe3O4) stabilized with sodium dodecyl sulfate (SDS) and to investigate the effect of its different percentages (0, 1, 2.5, 5, and 10%) on the different fractions of cadmium in soil by sequential extraction method. The nanoparticles were synthesized following the protocol described by Si et al. (19). The investigations were carried out with a loamy sand topsoil. Before use, the soil was air-dried, homogenized and sieved (

کلیدواژه‌ها [English]

  • Cadmium
  • Soil Contamination
  • Sequential Extraction
  • Nanoparticles
1- Adriano D.C. 2001. Trace elements in terrestrial environments, biogeochemistry, bioavailability and risks of metals, second ed. Springer, New York.
2- Alibeigi S., and Vaezi M. 2008. Phase Transformation of Iron Oxide Nanoparticles by Varying the Molar Ratio of Fe2+: Fe3+. Journal of Chemistry Engineering Technology, 31(11):1591–1596.
3- Bolan N.S., Adriano D.C., and Curtin D. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advanced in Agronomy, 78:216-272.
4- Carini R., Bellomo G., Benedetti A., Fulceri R., Gamberucci A., Parola M., Dianzani M.U., and Albone E. 1995. Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion. Hepatology: 1089-1098.
5- Chapman H.D. 1965. Cation exchange capacity. In: Black, C.A. (Ed.), Methods of Soil Analysis: Part 2. Monogr. Ser., vol. 9. American Society of Agronomy, Madison, WI, pp. 891–900.
6- Chen G.; Zeng G.; Chunyan D.; Huang D.; Lin T.; Wang L. and Guoli Sh. 2010. Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions. Journal of Hazardous Materials, 181: 211–216.
7- Degryse F.; Smolders E., and Parker D.R. 2009. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications: a review. European Journal of Soil Science, 60: 590–612.
8- Han F.X.; Hargreaves J.A.; Kingery W.L.; Huggett D.B. and Schlenk D.K. 2001. Accumulation, distribution, and toxicity of copper in sediments of catfish ponds receiving periodic copper sulfate applications. Journal of Environmental Quality, 30: 912–919.
9- Hutton M., and Symon C. 1986. The quantities of cadmium, lead, mercury and arsenic entering the U.K. environment from human activities. Journal of Science of the Total Environment, P57; 129-150.
10- Jackson B.P., and Miller W.P. 2000. Soil solution chemistry of a fly ash poultry litter and sewage sludge-amended soil. Journal of Environmental Quality, 29 (2): 430–436.
11- Jordan A.; Scholz R.; Wust P.; Fakhling H., and Felix R. 1999. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic "eld induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 201: 413–419
12- Liu R., and Zhao D. 2007. The leachability, bioaccessibility, and speciation of Cu in the sediment of channel catfish ponds. Journal of Environmental Pollution, 147: 593–603.
13- Lu A.; Zhang S., and Shan X.Q. 2005. Time effect on the fractionation of heavy metals in soils. Journal of Geoderma, 125: 225–234.
14- Miller W.P., Martines D.C., and Zelazity I.W. 1986. Effect of sequence in extraction of trace metals from soils. Soil Science Society of America Journal, 50: 598-601.
15- Nelson D.W., and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. Part 2. In: Page, A.L. Ed .Methods of Soil Analysis, second ed. ASA and SSSA, Madison, WI, pp. 539–579.
16- Ozsoy H.D.; Kumbur, H., and Ozer Z. 2007. Adsorption of copper (II) ions to peanut hulls and Pinus brutia sawdust Int. Journal of Environmental Pollution, 31: 125–134.
17- Peltier E.; Dahl A.L., and Gaillard J.F. 2005. Metal speciation in anoxic sediments: when sulfides can be construed as oxides. Journal of Environmental Science and Technology, 39: 311–316.
18- Reible D.; Lampert D.; Constant D.; Mutch J., and Zhu Y. 2006. Active capping demonstration in the Anacostia River. Journal of Remediation, 17: 39–53.
19- Reyhanitabar A., Alidokht L., Khataee A.R., and Oustan S. 2012. Application of stabilized Fe0 nanoparticles for remediation of Cr (VI)-spiked soil. Europen Journal of Soil Science, 63: 724-732.
20- Rostami S. 2001. Using of human hair to remove heavy metals from aqueous solution (cadmium and lead). MSc dissertation. Islamic Azad University of Ahvaz (in Persian with English abstract).
21- Si S.; Kotal A., and Mandal T.K. 2004. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Jornal of Chemistry Material, 16: 3489−3496.
22- Tamura H., and Furrichi R. 1997. Adsorption affinity of divalent heavy metal ions for metal oxides evaluated by modeling with the Frumkin isotherm. Journal of Colloid Interface Science, 195: 241–249.
23- Tang X.Y., Zhu Cui Y.S., Duan J., and Tang L. 2006. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environment International, 32: 682–689.
24- Tessier A.; Campbell P.G.C., and Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Journal of Analytical Chemistry, 51: 844–851.
25- Xu Y.; Liu R., and Zhao D. 2009. Reducing leachability and bioaccessibility of toxic metals in soils, sediments, and solid /hazardous wastes using stabilized nanoparticles. Journal of Nanotechnology Applications for Clean Water: 365–374.
26- Zhang Z.; Li M.; Chen W.; Zhu Sh.; Liu N., and Zhu L. 2010. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Journal of Environmental Pollution, 158: 514–519.
27- Zhou J.; Wu W.; Caruntu D.; Yu M.H.; Martin A.; Chen J.F.; Connor C.O., and Zhou W.L. 2007. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application. Journal of Physical Chemistry, 111: 17473–17477.