ارزیابی اثر کاربری جنگل و مرتع بر فرسایش بین‌شیاری و برخی ویژگی‌های فیزیکی خاک در جنوب شرقی ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکترا فیزیک و حفاظت خاک دانشگاه ولی عصر (عج) رفسنجان

2 ولی عصر (عج) رفسنجان

3 انستیتو inter3GmbH

چکیده

فرسایش بین­شیاری یکی از انواع مهم فرسایش است که سهم عمده­ای در انتقال ذرات ریز خاک به­ویژه در مناطق خشک و نیمه­خشک دارد. به همین منظور هدف از انجام این مطالعه تعیین حساسیت خاک چهار نوع کاربری اراضی مختلف اطراف شهرستان جیرفت به فرسایش بین­شیاری هم به وسیله شبیه­سازی باران و هم از طریق تعیین تعدادی از شاخص­های پایداری خاکدانه بود. کاربری­های مورد بررسی شامل مرتع دست­خورده، مرتع دست‌نخورده، جنگل حفاظت شده، و جنگل مصنوعی بود. برای انجام این کار متناسب با میانگین بلندمدت منطقه بارانی با شدت 60  میلی­متر بر ساعت توسط دستگاه شبیه­ساز باران بر روی خاک ایجاد و فرسایش بین­­شیاری اندازه­گیری شد. سپس شاخص­های پایداری خاکدانه و برخی خصوصیات فیزیکی و شیمیایی خاک اندازه­گیری شدند. نتایج نشان داد که بیشترین مقدار ماده آلی، رس و مقاومت کششی، و کمترین مقادیر جرم مخصوص ظاهری، درصد شن و بعد فراکتال در مرتع دست­نخورده (پوشش غالب درمنه، گون، یال اسبی و گیس پیرزن) وجود داشت. توزیع اندازه ذرات رسوب در مرتع دست‌نخورده کوچکتر و در جنگل حفاظت شده بزرگتر بود. هم­چنین بیشترین غلظت رسوب و بیشترین مقدار فرسایش در مرتع دست­خورده وجود داشت. کمترین غلظت رسوب در جنگل مصنوعی و کمترین مقدار فرسایش در جنگل مصنوعی و جنگل حفاظت شده دیده شد. به طور کلی نتایج نشان می­دهد که رخداد فرسایش بی­شیاری در برخی کاربری­ها به ویژگی­های ذاتی خاک مانند بافت خاک و در برخی دیگر به شیب زمین بستگی دارد. از طرف دیگر مقایسه مقدار فرسایش و غلظت رسوب نشان می­دهد که این دو ویژگی در کاربری­های مورد مطالعه با هم مطابقت دارند. به این معنی که می­توان غلظت رسوب را به عنوان شاخص مقدار فرسایش در نظر گرفت. در مجموع بهترین روش در جهت کاهش فرسایش بین­شیاری در منطقه را می­توان انجام اقدامات مدیریتی از قبیل حفظ و احیای پوشش گیاهی دانست که هم ساختمان خاک را بهبود بخشیده و هم فرسایش­پذیری آن را کاهش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Forest and Pasture Land Uses on Interrill Erosion and Some of Soil Physical Properties in Southeastern Iran

نویسندگان [English]

  • A. Sharifi 1
  • H. Shirani 2
  • A.A. Besalatpour 3
  • E. Esfandiarpour 2
1 Rafsanjan
2 Rafsanjan
3 Inter3 Institute for Resource Management, Berlin, Germany
چکیده [English]

Introduction: Interrill erosion is one of the major types of erosion playing key role in the transport of fine particles of the soil, particularly in arid and semi-arid regions, which leads to the decrement of soil fertility and surface water pollution. Land-use change is one of the main ways which reflect the interaction of human activities and the natural environment and can impact soil aggregation, aggregate stability, and erodibility. Hence, this research aimed to evaluate the susceptibility of soils under different land-use types (four types) to interrill erosion using both rainfall simulation test and soil aggregate stability indexes. The location of study area was around Jiroft city.
Materials and Methods: This study was conducted in four types of land use around Jiroft city in southern Iran, including disturbed pasture, undisturbed pasture, protected forests, and artificial forest. For each land use, 25 points were selected (A total of 100 points for all land uses). To measure soil physical and chemical properties, disturbed and undisturbed soil samples were collected from each point at a depth of 0–20 cm. The samples were transported to the laboratory where these samples were then air-dried. Some soil properties such as texture, organic carbon, electrical conductivity, soil acidity, calcium carbonate equivalent, and bulk density were measured, and available nitrogen, phosphorus, and potassium in the soil and sediment samples were also determined. Furthermore, some characteristics of soil particles, including the geometric mean diameter, geometric standard deviation, particulate organic matter, water-dispersible clay, tensile strength of soil aggregate, mean weight diameter and fractal dimension of aggregates were determined. To assess how susceptible are soils to interrill erosion, rainfall simulator was used to generate rainfall with an average intensity of 60 mm/h.
Results and Discussion: According to the results, the undisturbed pasture revealed the highest content of organic matter, particulate organic matter, clay, and tensile strength, while the minimum values of bulk density, sand percentage, and fractal dimension have been observed in this land use. For this reason, it is assumed that the aggregates of undisturbed pasture (intact rangeland) show more stability than other three land uses. The maximum and minimum values of bulk densities were observed in the protected forest (1.58 g cm-3) and undisturbed pasture (1.43 g cm-3), respectively. On the other hand, the highest value of aggregates fractal dimension, as well as minimum values for mean weight diameter and dispersible clay in the protected forest demonstrated that this land use had either no aggregate or its aggregates were very fine. As a matter of fact, lack of organic matter and insufficient clay content can be considered to be the reasons for poor aggregate stability in this land use. The highest and lowest values for tensile strength of soil aggregate were found in the undisturbed rangeland (64.82 kPa) and protected forest (34.38 kPa), respectively. The variations in the tensile strength of soil aggregate can be attributed to the changes in the contents of clay and organic matter in different land uses. Moreover, despite the maximum amount of total organic matter in the undisturbed pasture (or intact rangeland), the amount of sediment organic matter in this land use was lower than the other three land uses. It is because of the fact that most of the OM in this area was of a stable organic matter type, which was under the soil surface and was accordingly protected from surface erosion. The particle size distribution of sediment was smaller in the undisturbed pasture, whereas it was found to be larger in the protected forest. The reason can be attributed to the coarse-textured soil in the forest compared to the finer-textured soil in the undisturbed pasture (or intact rangeland). In addition, the highest sediment concentration and the highest rate of erosion were observed in the disturbed pasture. The artificial forest accounted for the minimum sediment concentration, while the artificial forest, as well as the protected forest, revealed the lowest erosion rate.
Conclusion: The results of the current research demonstrated the high rate of interrill erosion in all land uses so that the disturbed pasture and artificial forest accounted for the highest and the lowest rate of erosion (7 and 2 ton/ha) respectively. According the results, intrinsic soil characteristics such as soil texture played major role in some land uses, while for the others, the slope impact was more crucial. On the other hand, both erosion rate and sediment concentration revealed the same trend under four different land uses of the study area. Therefore, because of the fact that the highest and the lowest rate of erosion, as well as sediment concentration, were found to be in the disturbed pasture, and the artificial forest, respectively, therefore the sediment concentration can be considered to be an important index for soil erosion. Due to high rates of erosion occurring in the study areas, some measures have to be undertaken to prevent and control soil erosion in this area. To achieve this aim, preventing people from entering the vulnerable area, avoiding livestock grazing, protecting existing plants and restoration of native plants can be mentioned as efficient measures to improve conditions.

کلیدواژه‌ها [English]

  • Dispersible clay
  • Fractal Dimension
  • Rainfall simulator
  • Sediment
  • Tensile strength of aggregate
1- Abrishamkesh S., Gorji M., and Asadi H. 2011. Long-term effects of land use on soil aggregate stability. International Agrophysics 25(2): 103-108.
2- Amiri I., Sodaiezade H., Mosleh Arani A., Taie Semiromi J. and Hakimzade M.A. 2019. Autecology of Tecomella undulata (Roxb.) Seem in southern Iran. Journal of Forest and Poplar Research 26(4): 506-519. (In Persian with English abstract)
3- Blake G.R., and Hartge K.H. 1986. Bulk density. In: Klute, A. (Ed.), Methods of Soil Analysis Part 1, Physical and Minerological Methods. Agron. Monogr. 9, 2nd ed. ASA and SSSA, Madison, WI, pp. 364–367.
4- Bongiovanni M.D., and Lobartini J.C. 2006. Particulate organic matter, carbohydrate, humic acid contents in soil macro- and microaggregates as affected by cultivation, Geoderma 136(2006): 660–665.
5- Brtnicky M., Elbl J., Dvorackova H., Kynicky J., and Hladky J. 2017. Changes in soil aggregate stability induced by mineral nitrogen fertilizer application. Acta universitatis agriculturae et Silviculturae Mendelianae Brunensis 65(5): 1477-1482.
6- Bruce-Okine E., and Lal R. 1975. Soil erodibility as determined by raindrop technique. Soil Science 119(2): 149-157.
7- Burt R., Reinsch T.G., and Miller W.P. 1993. A micro pipette-method for water dispersible clay. Communications in Soil Science Plant Analysis 24 (19&20): 2531-2544.
8- Calero N., Barron V., and Torrent J. 2008. Water dispersible clay in calcareous soils of southwestern Spain. Catena 74: 22-30.
9- Cambardella C.A., and Elliott E.T. 1993. Methods for physical separation and characterization of soil organic matter fractions. Geoderma 56: 449-457.
10- Chaplot V., and Cooper M. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma 243–244: 205-213.
11- Chen X.Y., Zhao Y., Mi H.X., and Mo B. 2016. Estimating rill erosion process from eroded morphology in flume experiments by volume replacement method. Catena 136: 135-140.
12- Christon R. 2015. Vegetation, inter rill erosion and aggregate stability on grazed alpine meadows. Master thesis.
13- Dexter A.R., and Kroesbergn B. 1985. Methodology for determination of tensile strength of soil aggregates. Journal of Agricultural Engineering Research 31: 139-147.
14- Ding W., and Huang C. 2017. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology 295: 801-810.
15- FAllahzade J., and Hajabbasi M. 2012. Land use change effects on carbohydrate fractions total and particulate organic matter of forest soils in central Zagros Mountains. Journal of applied Sciences 12(4): 387-392.
16- Gee G.W., and Bauder J.W. 1982. Particle-size analyses In: Klute, A. (Ed.), Method of Soil Analyses, Part 1: Physical and Mineralogical Methods, 2nd ed. American Society of Agronomy, Madison, WI, 383–411.
17- Gumiere S.J., Le Bissonnais Y., and Raclot D. 2009. Soil resistance to interrill erosion: Model parameterization and sensitivity, Catena 77: 274–284.
18- Hillel D. 1980. Fundamentals of soil physics. New York: Academic Press, 1980.
19- Jordan A. and Martinez-Zavala L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management 255(2008): 913-919.
20- Kamphorst A. 1987. A small rainfall simulator for the determination of soil erodibility, Netherlands. Journal of Agricultural Science 35: 407-415.
21- Kavdir Y., Ozcan H., Ekinci H., Yigini Y., and Yuksel O. 2004. The influence of clay content, organic carbon and land use types on soil aggregate stability and tensile strength. Turkish Journal of Agriculture and Forestry 28(3): 155-162.
22- Le Bissonnais Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: 1. Theory and methodology, European Journal of Soil Science 47: 425-437.
23- Legout C., Leguedois S., and Le Bissonnais Y. 2005. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements, European Journal of Soil Science 56: 225–237.
24- Levy G.J., and Mamedov A.I. 2002. High-Energy-Moisture-characteristic aggregate stability as a predictor for seal formation. Soil Science Society of America Journal 66: 1603–1609.
25- Li Z., Zhang G., Geng R., and Wang H. 2015. Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China, Biosystems Engineering 129: 248–257.
26- Mahmoodabadi M., and Arabkhedri M. 2011. Rainfall and erosion simulation laboratory soil conservation and watershed management research institute: characteristics, capabilities and applications. Journal of Irrigation and Water Engineering 1(3): 1-11. (In Persian with English abstract)
27- Mamedov A.I., Huang C., and Levy G.J. 2006. Antecedent moisture content and aging duration effects on seal formation and erosion in smectitic soils. Soil science society of America Journal 70: 832–843.
28- Mamedov A.I., Mamedov G.S., and Mikailsoy, F. 2013. An effective aggregate stability method for soil management and quality evaluation. Soil-Water Journal 2, Number 2(1).
29- McLean E.Q. 1982. Soil pH and lime requirement. In: Page, A.L. Miller, R.H. Keeney, D.R (Eds). Methods of Soil Analysis, Part 2. Chemical and microbilogycal Pproperties, 2nd Ed Agronomy. 9: 199-224.
30- Miller W.P., and Miller D.M. 1987. A micro‐pipette method for soil mechanical analysis. Communications in Soil science and plant analysis, 18:1, 1-15, DOI: 10.1080/00103628709367799.
31- Nciizah A.D., and Wakindiki I.I.C. 2012. Particulate organic matter, soil texture and mineralogy relations in some Eastern Cape ecotopes in South Africa. South African Journal of Plant and Soil 29(1): 39-46.
32- Olsen S.R., and Sommers L.E. 1982. Phosphorus, In: A. L. Page (ed.) Methods of soil analysis Agron. No. 9, Part2: Chemical and microbiological properties, 2nd ed., P. 403-430. American society agronomy, Madison, WI, USA.
33- Ontl T.A., Cambardella C.A., Schulte L.A. and Kolka R.K. 2015. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma 255-256: 1-11.
34- Page A.L., Miller R.H., and Keeney D.R. 1982. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed, Agron. Monog. 9. ASA and SSSA, Madison, WI.
35- Qi F., Zhang R., Liu X., Niu Y., Zhang H., Li H., Li J., Wang B., and Zhang G. 2018. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil and Tillage Research 184: 45-51.
36- Reis D.A., de Lima C.L.R., Pauletto E.A., Dupont P.B., and Pillon C.N. 2014. Tensile strength and friability of an alfisol under agricultural management systems. Scientia Agricola 71(2): 163-168.
37- Rienzy E.A., Fox J.A., Grove J.H., and Motocha C.J. 2013. Interrill erosion in soils with different land uses: The kinetic energy wetting effect on temporal particle size distribution, Catena 107: 130–138.
38- Roades, J.D. 1996. Salinity: electrical conductivity and and total dissolved solids. Method of soil analysis, Part 3: Chemical Methods. Madison. Wisconsin, USA. 417-436.
39- Robichaud P.R., Wagenbrenner J.W., and Brown R.E. 2010. Rill erosion in natural and disturbed forests: 1. Measurements, Water resources research, Vol. 46, W10506, doi: 10.1029/2009WR008314, 2010.
40- Roodab Paydar Consulting Engineers, 2011. Detailed studies of forest resources management plan in Tal Siah area, ministry of Agriculture. (In Persian)
41- Sabznegar Afaq Co. 1999. Farrash rangeland plan, ministry of Agriculture. (in Persian)
42- Saman Sabz Ariyan Consulting Engineers, 2008. Marghzar rangeland plan, ministry of Agriculture. (In Persian)
43- Saygın S.D., Cornelis W.M., Erpul G., and Gabriels D. 2014. Comparison of different aggregate stability approaches for loamy sand soils. Applied soil ecology 54:1-6.
44- Sheridan G.J., Noske P.J., Lane P.N.J., and Sherwin C.B. 2008. Using rainfall simulation and site measurements to predict annual interrill erodibility and phosphorus generation rates from unsealed forest roads: Validation against in-situ erosion measurements, Catena 73: 49–62.
45- Sparks D.L. Ed. 1996. Methods of Soil Analysis, Part3. Chemical Methods. SSSA Book Series, vol. 5. American sSociety of agronomy and soil science society of America, Madison, WI, USA. p. 1390.
46- Tajik F., Rahimi H., and Pazira E. 2002. The Effect of Soil Organic Matter, Electrical Conductivity, and Sodium Adsorption Ratio on Tensile Strength of Aggregates. JWSS. 2002 6(3): 151-161. (In Persian with English abstract)
47- Teramage M.T., Onda Y., Kato H., Wakiyama Y., Mizugaki S., and Hiramatsu S. 2013. The relationship of soil organic carbon to 210Pbex and 137Cs during surface soil erosion in a hillslope forested environment. Geoderma 192: 59-67.
48- Van Bavel C.H.M. 1950. Mean Weight Diameter of Soil Aggregates as a Statistical Index of Aggregation. Soil Science Society of America Journal 14: 20-23.
49- Walkly A., and Black I.A. 1934. An examination of digestion methods for determining soil organic matter and a proposed modification of the chromic and titration. Soil Science Society of America Journal 37: 29-38.
50- Yang P.L., Luo Y.P., and Shi Y.C. 1993. Fractal features of soil defined by grain weight distribution. Chinese Science Bulletin 38(20):1896–1899.
51- Zhang K.L., Shu A.P., Xu X.L., Yang Q.K., and Yu B. 2008. Soil erodibility and its estimation for agricultural soils in China. Journal of Arid Environments 72: 1002–1011.
52- Zheng Z., He S., and Li T. 2011. Fractal dimensions of soil structure and soil anti erodibility under different land use patterns. African Journal of Agricultural Research 6(24): 5496-5504.