ارزیابی تأثیر نسبت‌های مختلف اجزاء کود زیستی بر انحلال پتاسیم توسط باکتری Pseudomonas fluorescens

نوع مقاله : مقالات پژوهشی


دانشگاه ارومیه


افزایش سالانه­ی قیمت کودهای شیمیایی پتاسیمی و نیز اثرات مخرب این کودها بر محیط­زیست، اتخاذ راهکاری برای استفاده از پتاسیم بومی خاک را ضروری نموده است. استفاده از کودهای زیستی حاوی ریزجانداران سودمند از جمله این راهکارها محسوب می­شود. این مطالعه با هدف مدل‌سازی و بررسی تأثیر نسبت­های مختلف ورمی­کمپوست، فلوگوپیت و گوگرد بر میزان انحلال و آزادسازی پتاسیم توسط باکتری Pseudomonas fluorescens و ارائه سطوح مطلوب این متغیرها برای تهیه کود زیستی کارآمد انجام گرفت. بر این اساس تعداد 20 آزمایش با استفاده از روش سطح پاسخ بر مبنای طرح مرکب مرکزی تعریف شد و اثر مقادیر مختلف متغیرهای ورمی­کمپوست، کانی فلوگوپیت و گوگرد در چهار سطح کدبندی شده (+α،1+، 0، 1- و α-) بر میزان انحلال پتاسیم بررسی گردید. نتایج نشان­دهنده­ی کارآمدی بالای ( 8/0= RMSE و  949/0= R2) مدل طرح مرکب مرکزی در برآورد انحلال پتاسیم بود. بر اساس نتایج، برهم­کنش ورمی­کمپوست با گوگرد ( 0338/0>p ) و برهم­کنش فلوگوپیت با گوگرد (0083/0>p ) نسبتاً زیاد و معنی­دار بود. نتایج تحلیل آماری ضرایب مدل طرح مرکب مرکزی حاکی از اثر مثبت و افزاینده­ی ورمی­کمپوست (X1) و اثر منفی و کاهنده فلوگوپیت (X2) و گوگرد (X3) بر افزایش انحلال پتاسیم بود. بطوری­که با افزایش مقدار گوگرد از 25/10 به 75/39 درصد، انحلال پتاسیم تقریباً 61/31 درصد کاهش یافت. بر اساس پیش­بینی شرایط بهینه برای انحلال پتاسیم، مقادیر 78/41 درصد ورمی­کمپوست، 35/24 درصد فلوگوپیت و 25/10 درصد گوگرد منجر به بیشترین انحلال پتاسیم (27/109 میلی­گرم بر لیتر) توسط باکتری سودوموناس فلورسنس می­شود.


1- Adesemoye A.O., and Kloepper J.W. 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology 85(1): 1-12.
2- Alikhani H.A., and Hemati A. 2014. Effect of Vermicompost Enrichment with Chemical Fertilizer and Bacterial Treatments on Humification and Acid Humic Properties. Agricultural Science and Sustainable Production 24: 113-125. (In Persian with English Abstract)
3- Almeida H.J., Pancelli M.A., Prado R.M., Cavalcante V.S., and Cruz F.J.R. 2015. Effect of potassium on nutritional status and productivity of peanuts in succession with sugar cane. Journal of Soil Science and Plant Nutrition 15(1): 1-10.‏
4- Amanpour J., Salari D., Niaei A., Mousavi S.M., and Panahi P.N. 2013. Optimization of Cu/activated carbon catalyst in low temperature selective catalytic reduction of NO process using response surface methodology. Journal of Environmental Science and Health 48(8): 879-886.
5- Anonymous. 2006. Biofertilizer Manual, FNCA Biofertilizer Project Group. Japan Atomic Industrial Forum.
6- Archana D.S., Nandish M.S., Savalagi V.P., and Alagawadi A.R. 2013. Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. BIOINFOLET-A Quarterly Journal of Life Sciences 10(1): 248-257.‏
7- Ashrafi-Saeidlou S., and Rasouli-Sadaghiani M.H. 2017. Potassium release kinetics from K-bearing minerals in presence of silicate-solubilizing microorganisms. Iranian Journal of Soil and Water Research 3: 639-649. (In Persian with English Abstract)
8- Badr M.A., Shafei A.M., and Sharaf El-Deen S.H. 2006. The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Research Journal of Agriculture and Biological Sciences 2(1): 5-11.
9- Barin M., Sadeghi S., Rasouli-Sadaghiani M.H., Sepehr E., Dovlti B., and Vahedi R, 2018. Influence of k- solubilizing fungi on potassium release from silicate minerals and some growth indexes on Corn (Zea mays L.). Applied Soil Research 6(2): 96-108. (In Persian with English Abstract)
10- Benitez E., Nogales R., Elvira C., Masciandaro G., and Ceccanti B. 1999. Enzyme and earthworms activities during vermicomposting of carbaryl treated sewage sludge. Journal of Environmental Quality 28: 1099–1104.
11- Besharati H. 2001. Preparing appropriate medium for Thiobacillus and study of its interaction with VAM and grain yield of wheat. PhD Thesis, Tarbiat Modarres University. 212 p. (In Persian with English Abstract)
12- Besharati H., and Saleh Rastin N. 2000. Study of Thiobacillus bacterial inoculation effects along with sulfur to increase the absorption of phosphorus. Journal of Soil and Water Sciences 13(23): 1-39. (In Persian with English Abstract)
13- Bin L. 1998. A study on how silicate bacteria GY92 dissolves potassium from illite. Acta Mineralogica Sinica 18(2): 234-237.‏
14- Box G.E., and Draper N.R. 2007. Response surfaces, mixtures, and ridge analyses. John Wiley & Sons.
15- Busato J.G., Lima L.S., Aguiar N.O., Canellas L.P., and Olivares F.L. 2012. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresource Technology 110: 390–395.
16- Chapman H.D., and Pratt P.F. 1978. Methods of analysis for soils, plants and waters. P. 30-43. Division of Agricultural Sciences. University of California, Berkeley, USA.
17- Dix N.J., and Webster J. 1995. Fungal Ecology. Cahpman & Hall, Cambridge, UK. 57p.
18- Etesami H., Emami S., and Alikhani H.A. 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. Journal of Soil Science and Plant Nutrition 17(4): 897-911.‏
19- Gangoliya S.S., Gupta R.K., and Singh N.K. 2015. Phytase production through response surface methodology and molecular characterization of Aspergillus fumigatus NF191. Indian Journal of Experimental Biology 53: 350-355.
20- Girgis M.G.Z., Khalil H.M., and Sharaf M.S. 2008. In vitro evaluation of rock phosphate and potassium solubilizing potential of some Bacillus strains. Australian Journal of Basic and Applied Sciences 2(1): 68-81.
21- Glick B.R. 2012. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012: 1-15.
22- Han H.S., and Lee K.D. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment 52(3): 130.
23- Kaushik P., Yadav Y.K., Dilbaghi N., and Garg V.K. 2008. Enrichment of vermicompost prepared from cow dung spiked solid textile mill sludge using nitrogen fixing and phosphate solubilizing bacteria. Environmentalist, 28:283–287.
24- Khoshrou B. Sarikhani M.R., and Aliasgharzad N. 2017. Application and non-application of sulfur in the formulation of Pseudomonas fluorescens phosphatic microbial fertilizer on Corn (Zea mays L.). Agricultural Science and Sustainable Production 27: 119-136.
25- Lian B., Wang B., Pan M., Liu C., and Teng H.H. 2008. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta 72(1): 87-98.
26- Liu W., Xu X., Wu X., Yang Q., Luo Y., and Christie P. 2006. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health 28(1-2): 133-140.
27- Meena V.S., Maurya B.R., and Bahadur I. 2014. Potassium solubilization by bacterial strain in waste mica. Bangladesh Journal of Botany 43(2):235–237.
28- Meena V.S., Maurya B.R., Verma J.P., Aeron A., Kumar A., Kim K. and Bajpai V.K. 2015. Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecological Engineering 81: 340-347.
29- Mirseyed-Hosseini H., Gerdelidani-Fathi A., and Jabalameli M. 2017. Effects of elemental and bentonite sulfur on sulfur and phosphorous availability in calcareous soil and corn growth characteristics. Iranian Journal of Soil Research 1: 61-73.‏ (In Persian with English Abstract)
30- Nancarrow L., Taylor J.H. 1998. The Worm Book: The Complete Guide to Worms in Your Garden. Ten Speed Press. 152p.
31- Norouzi S., Khademi H., and Shirvani M. 2012. The kinetics of K release from muscovite and phlogopite with organic acids. Journal of Soil and Water Research 42: 163-173. (In Persian with English Abstract)
32- Parmar P., and Sindhu S.S. 2013. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiological Research 3(1): 25-31.
33- Pradhan N., and Sukla L.B. 2006. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology 5(10): 850-854.
34- Prasad M.P. 2014. Optimization of fermentation conditions of phosphate solubilizing bacteria- a potential bio fertilizer. Merit Research Journal of Microbiology and Biological Science 2(2): 031-035.
35- Ravindran B., Dinesh S.L., John Kennedy L., and Sekaran G. 2008. Vermicomposting of solid waste generated from leather industries using epigeic earthworm Eisenia fetida. Applied Biochemical Biotechnology 151: 480–488.
36- Rodriguez H., and Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17:319-339.
37- Saha M., Maurya B.R., Meena V.S., Bahadur I., and Kumar A. 2016. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatalysis and Agricultural Biotechnology 7: 202-209.‏
38- Senesi N., Miano T. M., and Brunetti G. 1996. Humic-like substances in organic amendments and effects on native soil humic substances. In Humic substances in terrestrial ecosystems. P. 531-593. Elsevier Science BV.
39- Sharmila M., Ramanand K., and Sethunathan N. 1989. Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Canadian Journal of Microbiology 35(12): 1105-1110.
40- Sheng X.F., and He L.Y. 2006. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology 52(1): 66-72.
41- Shilpa M.E., and Brahmaprakash G.P. 2016. Amendment of carrier with organic material for enhancing shelf life of microbial consortium. Journal of Pure and Applied Microbiology 10(4): 2835-2842.‏
42- Somasegaran P., and Hoben H.J. 1994. Preparing a Range of Carrier Materials and Producing Inoculants. In: Handbook for Rhizobia. Springer, New York.
43- Sparks D.L., and Huang P.M. 1985. Physical chemistry of soil potassium. P. 201-276. Potassium in Agriculture. Soil Science Society of America, Madison.
44- Sparks D.L. 1987. Potassium dynamics in soils. P. 1-63. In Advances in soil science. Springer, New York.‏
45- Swetha S., Varma A., and Padmavathi T. 2014. Statistical evaluation of the medium components for the production of high biomass, a-amylase and protease enzymes by Piriformospora indica using Plackett–Burman experimental design. Biotechnology 4: 439–445.
46- Whitelaw M.A. 1999. Growth promotion of plants inoculated with phosphate-solubilizing fungi. P. 99-151. In: Advances in Agronomy, Academic Press.
47- Whitelaw M.A. 2007. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy 69: 99-151.
48- Witek-Krowiak A., Chojnacka K., Podstawczyk D., Dawiec A., and Pokomeda K. 2014. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology 160: 150-160.‏‏
49- Xiao Y., Wang X., Chen W., and Huang Q. 2017. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiology Journal 34(10): 873-880.‏
50- Zord C., Senbayram M., and Peiter E. 2014. Potassium in agriculture – status and perspective. Journal of Plant Physiology 171:656–659.