بررسی قابلیت انباشت زیستی جو برای سرب و کروم خاک در شرایط تنش خشکی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی دکتری گروه زراعت، دانشکده کشاورزی، دانشگاه زابل و عضو هیئت علمی دانشگاه پیام نور

2 گروه زراعت، دانشکدة کشاورزی، دانشگاه زابل، زابل، ایران.

3 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

4 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران.

چکیده

هدف از این تحقیق بررسی تأثیر کم‌آبی بر قابلیت انباشت زیستی و زیست‌فراهمی دو فلز سمی سرب و کروم برای گیاه جو بود که در یک آزمایش مزرعه‌ای دوساله، با اعمال سه سطح کم‌آبی با (آبیاری در 100 (شاهد)، 75 و 50 درصد ظرفیت زراعی) انجام شد. نتایج نشان داد که در همه موارد غلظت سرب و کروم در ریشه‌‌های گیاه جو بیشتر از شاخساره بود و با افزایش تنش خشکی، افزایش غلظت سرب در ریشه‌ها معنی‌دار نبود اما در شاخساره افزایش معنی‌دار داشت درحالی‌که غلظت کروم در هر دو بخش گیاه کاهش معنی‌دار داشت. با افزایش تنش خشکی، فاکتور انباشت شاخساره برای سرب افزایش و برای کروم کاهش یافت. همچنین با افزایش سطح کم‌آبی، فاکتور انباشت ریشه برای کروم کاهش یافت در حالی‌که فاکتور انتقال برای هر دو عنصر افزایش یافت اما افزایش آن برای سرب برجسته‌تر بود. فاکتور انباشت شاخساره برای سرب با افزایش وزن خشک شاخساره بصورت خطی کاهش یافت (0٫86-β=) اما فاکتور انباشت شاخساره برای کروم افزایش یافت (0٫62β=). مدل رگرسیونی وزن خشک ریشه، فاکتور انباشت ریشه برای کروم را با (0٫85β= ) پیش‌بینی کرد. مدل رگرسیونی وزن خشک کل گیاه توانست فاکتور انتقال سرب را با (0٫89- β=) و فاکتور انتقال کروم را با (0٫67- β=) پیش‌بینی کند. در این آزمایش ضرایب انباشت و انتقال زیستی مورد مطالعه همگی کمتر از یک بدست آمد، بنابراین گیاه جو زراعی نسبت به سرب و کروم موجود در خاک، گیاهی اجتناب کننده است و در شرایط کم‌آبی فزاینده در شرایط مزرعه، این فلزات سمی را به زنجیره غذایی انتقال نمی‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Bioaccumulation Capacity of Barley for Soil Lead and Chromium under Drought Stress Conditions

نویسندگان [English]

  • M. Madahinasab 1
  • M. Mousavi nik 2
  • S.A. Ghanbari 3
  • A.R. Sirousmehr 2
  • Sh. Kouhestani 4
1 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran. & Department of agricultural science, Payame Noor University, Tehran, Iran.
2 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran.
3 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, Iran.
4 Department of Water Engineering, Faculty of Agriculture, University of Jiroft, Karmen, Iran.
چکیده [English]

Introduction: The use of sewage sludge, which is mixed locally with poultry waste and is available at a relatively low cost, improves the circulation of nutrients and organic matter in the soil, reduces the concentration of CO2 in the atmosphere, and increases the level of soil organic carbon. Fertilization with this method is of particular importance in soils of arid and semi-arid regions that face erosion and organic matter reduction. However, there are concerns about the presence of essential and unnecessary heavy metals such as Cd, Cr, Cu, Ni, Pb, and Zn that enter the environment from domestic, light industrial, commercial and municipal wastewater sources and can lead to soil contamination and eventually enters the food chain through absorption, transport, and accumulation in agricultural and non-agricultural products and has threatened human and animal health. Phytoremediation is the cleaning up of polluted terrestrial areas and aquatic sites from heavy metal and organic contaminants by green plants. An appropriate plant for phytoremediation should ideally have a high ability to translocate contaminants into the plant shoot. However, the toxicity of the remains of these plants has become a severe problem for human health. Iran is an arid and semi-arid country and many soils face the problem of using animal manure sources with sewage sludge and the possibility of contamination with heavy metals. Farmers cultivate the barley plant (Hordeum vulgare L.) in these areas widely, and it has a significant role in the food chain of livestock and humans. Therefore, in this study, we evaluated the barley plant in terms of lead and chromium accumulation by increasing drought levels in the field.
Materials and Methods: It was a two-year field experiment with three irrigation levels (irrigation per 100 (control), 75 and 50% of field capacity). The amount of chromium and lead in soil and plant samples was measured using atomic spectroscopy with flame mode after extraction by digestion in acid. We used bio-concentration coefficients including root bioaccumulation factor ( ), shoot bioaccumulation factor ( ) and translocation factor ( ) to measure the plants bio-accumulation capacity. A plant with a root bioaccumulation factor bigger than one and a bio-translocation factor of less than one is suitable for plant stabilization of elements. In contrast, a plant with a shoot bioaccumulation factor and bio-translocation factor of more than one and root bioaccumulation factor of less than one is suitable for plant extraction of elements from the soil.
Results and Discussion: After barley harvest, the average concentration of lead and chromium in soil decreased by 23% and 17% compared to before harvest. The results of the analysis of variance showed that the effect of experimental years was significant on the concentration of chromium in the soil and the aerial part of barley and shoot bioaccumulation and root bioaccumulation factor of the same elements in the barley (p<0.05). The effect of drought was significant on the shoot and root dry weight, chromium concentration in both shoots and roots, lead concentration in shoots, lead and chromium shoot bioaccumulation factor, chromium root bioaccumulation factor, and lead bio-translocation factor (p<0.01) and chromium bio-translocation factor (p<0.05) but the interaction effect of year and drought was not significant on any of these traits. In all cases, the concentration of elements in the roots was higher than the aerial part, and with increasing drought stress, the concentration of lead in the roots remained constant but increased in the aerial parts while the concentration of chromium decreased. As the amount of drought increased, the shoot bioaccumulation factor increased for the lead but decreased for the chromium. The root bioaccumulation factor of chromium also decreased while the translocation factor increased for both elements, but the increase was more pronounced for the lead. Lead shoot bioaccumulation factor decreased linearly with an increasing dry weight of aerial parts (β = -0.86), but chromium shoot bioaccumulation factor increased (β = 0.62). Root dry weight predicted chromium root bioaccumulation factor (β = 0.85). The total plant dry weight regression model could predict the lead translocation factor (β = -0.89) and chromium transfer factor (β = -0.67).
Conclusion: In this experiment, the studied bioconcentration coefficients were all less than one. So, barley is an avoidant plant when encountered with lead and chromium in the soil, and in increasing drought conditions in the field, it does not translocate these toxic metals to the food chain.

کلیدواژه‌ها [English]

  • Bioavailability
  • Food chain
  • Toxic metal
  • translocation factor
  • Water deficiency

این مقاله در دوره 35 شماره 4 به چاپ خواهد رسید

این مقاله در دوره 35 شماره 4 به چاپ خواهد رسید

1- Adriano DC. 2001. Arsenic. p. 219-261.  Trace elements in terrestrial environments. 2 ed. Springer. Verlag New York.
2- Albaladejo J., Ortiz R., Garcia-Franco N., Navarro AR., Almagro M., Pintado JG, et al. 2013. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. Journal of Soils and Sediments 13(2): 265-277.
3- Ali S., Abbas Z., Rizwan M., Zaheer IE., Yavaş İ., Ünay A., et al. 2020. Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability 12(5): 1927.
4- Allen SE. 1989.Chemical analysis of ecological materials. Boston : Blackwell Scientific Publications, USA.
5- Alloway BJ. 2013.Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. 3 ed. Springer, Netherlands. XVIII, 614 p.
6- Anjum SA., Xie X-y., Wang L-C., Saleem MF., and Man Cand Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6(9): 2026-2032.
7- Augustine Chioma Aand Ezerie Henry E, editors. 2020. Handbook of Research on Resource Management for Pollution and Waste Treatment IGI Global: Hershey, PA, USA.
8- Baker AJM. 1981. Accumulators and excluders ‐strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3(1-4): 643-654.
9- Baker AJM., McGrath S., Reeves RD., and Smith JAC. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. p. 85-107. In: Terry Nand Bañuelos G. Phytoremediation of contaminated soil and water. 1st Edition ed. CRC Press. Boca Raton, Florida.
10- Bańuelos GS., Cardon GE., Phene CJ., Wu L., Akohoue S., and Zambrzuski S. 1993. Soil boron and selenium removal by three plant species. Plant and Soil 148(2): 253-263.
11- Basta N., Ryan J., and Chaney R. 2005. Trace element chemistry in residual‐treated soil: Key concepts and metal bioavailability. Journal of Environmental Quality 34(1): 49-63.
12- Ben-Asher J. 1994. Simplified Model of Integrated Water and Solute Uptake by Salts- and Selenium-Accumulating Plants. Soil Science Society of America Journal 58(4): 1012-1016.
13- Boudiar R., Casas AM., Gioia T., Fiorani F., Nagel KA., and Igartua E. 2020. Effects of Low Water Availability on Root Placement and Shoot Development in Landraces and Modern Barley Cultivars. Agronomy 10(1): 134.
14- Brooks RR. 1987.Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press.
15- Brooks RR., Lee J., Reeves RD., and Jaffre T. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7: 49-57.
16- Brunetti G., Farrag K., Rovira PS., Nigro F., and Senesi N. 2011. Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma 160(3): 517-523.
17- Cai K., Chen X., Han Z., Wu X., Zhang S., Li Q, et al. 2020. Screening of Worldwide Barley Collection for Drought Tolerance: The Assessment of Various Physiological Measures as the Selection Criteria. Frontiers in Plant Science 11(1159).
18- Cecchi L., Španiel S., Bianchi E., Coppi A., Gonnelli C., and Selvi F. 2020. Odontarrhena stridii (Brassicaceae), a new Nickel-hyperaccumulating species from mainland Greece. Plant Systematics and Evolution 306(4): 69.
19- Chaignon V., Sanchez-Neira I., Herrmann P., Jaillard B., and Hinsinger P. 2003. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environmental Pollution 123(2): 229-238.
20- Chetri BK. 2020. Phytoremediation: Role of Mycorrhiza in Plant Responses to Stress. p. 125-143.  Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer.
21- Chiarucci A. 2003. Vegetation ecology and conservation on Tuscan ultramafic soils. The Botanical Review 69(3): 252-268.
22- Davis RD., Beckett PHT., and Wollan E. 1978. Critical levels of twenty potentially toxic elements in young spring barley. Plant and Soil 49(2): 395-408.
23- Dubey RS. 1996. Photosynthesis in plants under stressful conditions. Handbook of Photosynthesis 859-875.
24- Eid EM., Khedher KM., Ayed H., Arshad M., Mouldi A., Shaltout KH, et al. 2020. Prediction models based on soil properties for evaluating the heavy metal uptake into Hordeum vulgare L. grown in agricultural soils amended with different rates of sewage sludge. International Journal of Environmental Health Research 1-15.
25- Eid EM., and Shaltout KH. 2016. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site. International Journal of Phytoremediation 18(11): 1075-1085.
26- Gambi OV. 1992. The distribution and ecology of the vegetation of ultramafic soils in Italy. p. 217-247. In: Roberts BA., and Proctor J. The Ecology of Areas with Serpentinized Rocks: A World View. Springer Netherlands. Dordrecht.
27- Gardner WH. 1986. Water content. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5: 493-544.
28- Ge Y., Murray P., and Hendershot WH. 2000. Trace metal speciation and bioavailability in urban soils. Environmental Pollution 107(1): 137-144.
29- Gubrelay U., Agnihotri RK., Singh G., Kaur R., and Sharma R. 2013. Effect of heavy metal Cd on some physiological and biochemical parameters of Barley (Hordeum vulgare L.). International Journal of Agriculture and Crop Sciences 5(22): 2743.
30- Guha MM., and Mitchell RL. 1966. The trace and major element composition of the leaves of some deciduous trees. Plant and Soil 24(1): 90-112.
31- Guo T-R., Zhang G-P., Zhou M-X., Wu F-B., and Chen J-X. 2007. Influence of Aluminum and Cadmium Stresses on Mineral Nutrition and Root Exudates in Two Barley Cultivars Pedosphere 17(4): 505-512.
32- H. Samarah N. 2005. Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development 25(1): 145-149.
33- Hauggaard-Nielsen H., Andersen MK., Jornsgaard B., and Jensen ES. 2006. Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crops Research 95(2): 256-267.
34- Hou D., O’Connor D., Igalavithana AD., Alessi DS., Luo J., Tsang DCW, et al. 2020. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment 1(7): 366-381.
35- Kabata-Pendias A. 2010.Trace Elements in Soils and Plants. Fourth ed. CRC Press.
36- Kalis EJ., Temminghoff EJ., Town RM., Unsworth ER., and van Riemsdijk WH. 2008. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass. Journal of Environmental Quality 37(6): 2221-2231.
37- Koeppe DE. 1977. The uptake, distribution, and effect of cadmium and lead in plants. Science of The Total Environment 7(3): 197-206.
38- Kuiper I., Lagendijk EL., Bloemberg GV., and Lugtenberg BJJ. 2004. Rhizoremediation: A Beneficial Plant-Microbe Interaction. Molecular Plant-Microbe Interactions 17(1): 6-15.
39- Lambers H., and Oliveira RS. 2019.Plant Physiological Ecology. Springer International Publishing.
40- Lawlor DW., Day W., Johnston AE., Legg BJ., and Parkinson KJ. 1981. Growth of spring barley under drought: crop development, photosynthesis, dry-matter accumulation and nutrient content. The Journal of Agricultural Science 96(1): 167-186.
41- Ma LQ., Komar KM., Tu C., Zhang W., Cai Y., and Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature 409(6820): 579-579.
42- Ma Y., Rajkumar M., Zhang C., and Freitas H. 2016. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of Hazardous Materials 320: 36-44.
43- McBride MB. 2003. Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks? Advances in Environmental Research 8(1): 5-19.
44- Mohammadi Sand Taii J. 2015. Exploring the possibility of soil contamination in the production of greenhouse cucumber to the health risks of heavy metals and its products in Jirof. Jiroft: Jiroft University.
45- Ordonez LR. 2016. Phytoremediation Potential of California Native Wetland Plants: Linking Microbial Activity and Native Plants to Remediation of Heavy Metals. ProQuest: San Diego State University.
46- Pal R., and Kundu R. 2016. Risk Assessment of Some Selected Vegetables Grown in Metal Contaminated Soil Supplements. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 86(3): 585-593.
47- Pascual I., Antolín MC., García C., Polo A., and Sánchez-Díaz M. 2004. Plant availability of heavy metals in a soil amended with a high dose of sewage sludge under drought conditions. Biology and Fertility of Soils 40(5): 291-299.
48- Peralta-Videa JR., Lopez ML., Narayan M., Saupe G., and Gardea-Torresdey J. 2009. The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry & Cell Biology 41(8-9): 1665-1677.
49- Rezvani Mand Zaefarian F. 2011. Bioaccumulation and translocation factors of cadmium and lead in' Aeluropus littoralis'. Australian Journal of Agricultural Engineering 2(4): 114.
50- Robinson BH., Brooks RR., Kirkman JH., Gregg PEH., and Varela Alvarez H. 1997. Edaphic influences on a New Zealand ultramafic (“serpentine”) flora: a statistical approach. Plant and Soil 188(1): 11-20.
51- Saravanan A., Jeevanantham S., Narayanan VA., Kumar PS., Yaashikaa PR., and Muthu CMM. 2020. Rhizoremediation – A promising tool for the removal of soil contaminants: A review. Journal of Environmental Chemical Engineering 8(2): 103543.
52- Seigneur C., and Constantinou E. 1995. Chemical Kinetic Mechanism for Atmospheric Chromium. Environmental Science & Technology 29(1): 222-231.
53- Singh RP., and Agrawal M. 2007. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67(11): 2229-2240.
54- Sinha P., Dube BK., Srivastava P., and Chatterjee C. 2006. Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere 65(4): 651-656.
55- Soriano-Disla JM., Gómez I., Navarro-Pedreño J., and Jordán MM. 2014. The transfer of heavy metals to barley plants from soils amended with sewage sludge with different heavy metal burdens. Journal of Soils and Sediments 14(4): 687-696.
56- Tiwari S., Singh. SN., and Garg. SK. 2013. Induced phytoremediation of metals from fly ash mediated by plant growth promoting rhizobacteria. Journal of Environmental Biology 34(4): 10.
57- Uveges JL., Corbett AL., and Mal TK. 2002. Effects of lead contamination on the growth of Lythrum salicaria (purple loosestrife). Environmental Pollution 120(2): 319-323.
58- Weis JS., and Weis P. 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International 30(5): 685-700.
59- Zhao FJ., Jiang RF., Dunham SJ., and McGrath SP. 2006. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytologist 172(4): 646-654.
60- Zhou L., Zhao Yand Wang S. 2015. Cadmium transfer and detoxification mechanisms in a soil–mulberry–silkworm system: phytoremediation potential. Environmental Science and Pollution Research 22(22): 18031-18039.