پاسخ پایه‌های مختلف مرکبات به مصرف کمپوست گرانوله گوگردی و نیتروژن

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استادیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی

2 استادیار، بخش علوم کشاورزی، دانشگاه پیام نور، ایران

چکیده

به‌منظور بررسی اثر کود کمپوست و نیتروژن بر پایه‌های رایج مرکبات شامل سیتروملو، سیترنج و نارنج، آزمایشی گلدانی به­صورت فاکتوریل در قالب طرح کاملاً تصادفی در ایستگاه تحقیقات باغبانی قائم‌شهر اجرا شد. تیمارها شامل ماده آلی (صفر، 5/2، 5 و 5/7 درصد وزنی کود کمپوست گرانوله گوگردی) و نیتروژن خالص (صفر، 20، 40 و 80 میلی­گرم بر کیلوگرم) از منبع سولفات آمونیوم بود. شاخص­های رشد رویشی در نهال­های یک­ساله با شرایط مشابه اندازه­گیری شد. هم­چنین به‌منظور بررسی تغییرات عناصر غذایی در تیرماه نمونه­های برگ جمع­آوری و غلظت عناصر غذایی در بافت برگ اندازه­گیری شد. نتایج نشان داد که پس از گذشت یک­ فصل رشد کامل بعد از اعمال تیمارها، بیش­ترین غلظت نیتروژن در نهال سیترنج و سیتروملو برابر 92/2 و 97/2 درصد به ترتیب در نتیجه مصرف 40 و 80  میلی­گرم در کیلوگرم نیتروژن و 5/2 درصد کمپوست به دست آمد. غلظت آهن و روی برگ سیتروملو با افزایش سطح مصرف کمپوست افزایش یافت. در پایه سیترنج روند متفاوت بود و مصرف 5/2 درصد کمپوست و 40 میلی­گرم نیتروژن بیش­ترین غلظت آهن برگ (151 میکروگرم در گرم) را نشان داد. در حالی­که مصرف 5 درصد کمپوست و عدم مصرف نیتروژن باعث کاهش غلظت آهن تا سطح 2/62 میکروگرم در گرم شد. تغییرات غلظت روی در پایه سیترنج مشابه سیتروملو بود. در پایه نارنج، تغییرات غلظت آهن در تیمارهای مختلف کمتر بود. به‌طور کلی، نهال سیترنج در جذب عناصر غذایی عملکرد بهتری نسبت به نهال سیتروملو و نارنج داشت که علت آن می­تواند تفاوت­های ژنتیکی، از جمله تفاوت در توزیع سیستم ریشه در خاک و توانایی جذب عناصر توسط ریشه در خاک باشد. مصرف سطوح 5 و 5/7 درصد کمپوست در پایه نارنج باعث کاهش ارتفاع گیاه و قطر طوقه و سبب ایجاد رزت و افزایش تعداد برگ گردید. مؤثرترین سطح نیتروژن در نارنج مصرف 80 میلی‌گرم در کیلوگرم نیتروژن بود. بیش­ترین رشد رویشی در پایه سیتروملو از تیمار مصرف 5/2 درصد کمپوست و 40 میلی­گرم در کیلوگرم نیتروژن و در پایه­های سیترنج و نارنج از 5/2 درصد کمپوست و 80 میلی‌گرم در کیلوگرم نیتروژن به­دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Response of Different Citrus Rootstocks to Sulfur Granular Compost and Nitrogen

نویسندگان [English]

  • M. Mahmoudi 1
  • Sh. Kazemi 2
1 Research Assistant professor. Soil and Water Department, Mazandaran Agricultural and Natural Resources Research and Education center, Agricultural Research, Education and Extension Organization
2 Assistant professor. Department of Agricultural Sciences. Payame Noor University, Iran
چکیده [English]

Introduction: The consumption of inorganic fertilizers in agricultural ecosystems led to the destruction of soil physical, chemical, and biological characteristics and severely affected the quality of the products. Therefore, the application of compost fertilizers in agricultural lands has been widely considered, and it has been mentioned as the best environmental measure. Rootstock plays a crucial role in the growth of citrus trees. Among all the nutrients needed by citrus, nitrogen has a vital role, and a large amount of this macronutrient is supplied in the soil every year. The release of nutrients from organic matter, especially nitrogen, is slower than the nitrogen release from chemical fertilizers. Rootstock affects the photosynthetic capacity of the transplanted cultivar, which is related to the annual carbohydrate redistribution and is a determining factor for vegetative growth and reproductive development. The growth, yield and fruit quality of cultivars are, therefore, strongly regulated by rootstock. In the recent study, the effects of compost and nitrogen fertilizers on common rootstocks in Mazandaran province, including citrange, citrumelo, and sour orange, were investigated.
Materials and Methods: An experiment was conducted as a completely randomized design at Qaemshahr Horticultural Research Station. The treatments included sulfur granular compost (0, 2.5, 5, and 7.5%), produced by Mazandaran Wood and Paper Industries Company, and pure nitrogen (0, 20, 40, and 80 mg kg-1) in the form of ammonium sulfate. Vegetative growth, including plant height, crown diameter, and the number of leaves, were measured. Also, to study the changes in leaf nutrient concentration, leaf samples were collected, in July and the concentration of nutrients in leaf tissue was measured. A randomized complete block design was conducted at Qaemshahr Horticultural Research Station in 2017. The treatments included sulfur granular compost (0, 2.5, 5, and 7.5%), produced by Mazandaran Wood and Paper Industries Company, and pure nitrogen (0, 20, 40, and 80 mg kg-1) in the form of ammonium sulfate. One-year-old seedlings of the same size from citrange, citrumelo, and sour orange were planted in 7- kg pots containing arable soil and the treatments. The applied soil was analyzed, and its physical and chemical properties were determined. Irrigation of all pots until reaching the field capacity (weight method) was performed uniformly for all treatments. At the end of the growth period, vegetative growth parameters, including plant height, crown diameter, and the number of leaves, were measured. Also, to study the changes in leaf nutrient concentration, fully developed leaves samples were collected, in July and the concentration of nutrients was analyzed. Nitrogen was determined by the Kjeldahl method with a sulfuric acid-hydrogen peroxide mixture. Phosphorus by calorimetric, potassium using a flame photometer, and calcium, magnesium, iron, manganese, zinc, and copper were measured using the flame atomic absorption method.
Results and Discussion: Results showed that the highest nitrogen concentrations in citrange and citrumelo seedlings were 2.92 and 2.97% due to 40 and 80 mg kg-1 N and 2.5% compost, respectively. In citrumelo rootstock, plant height increased with enhancing nitrogen application levels at different compost levels. Compost levels did not show a significant increase in citrange height, but the highest height growth was observed at 40 and 80 mg kg-1 nitrogen. In the sour orange rootstock, consumption of high levels of compost and nitrogen significantly reduced plant height. In all three rootstocks, the highest concentrations of potassium were observed in high levels of compost and no nitrogen application. The concentration of iron and zinc in citrumelo leaves increased with increasing compost levels. The trend was different in citrumelo so that consumption of 2.5% compost and 40 mg nitrogen fertilizer showed the highest concentration of leaf iron (151 μg g-1), while the application of 5% compost without nitrogen reduced the concentration of iron to 62.2 μg g-1. Changes in citrange zinc concentration were similar to citrumelo. In sour orange, iron concentration changed limitedly and ranged from 83.8 μg g-1 in 2.5% compost and 20 mg kg-1 nitrogen fertilizer to 61 μg g-1 in control. In this rootstock, the highest concentration of zinc was obtained from no compost application and 40 mg kg-1 nitrogen (28.14 μg g-1), whereas the lowest concentration of iron was observed in control. Citrange seedlings performed better in nutrient uptake than citrumelo and sour orange seedlings. Consumption of 5 and 7.5% levels of compost in sour orange rootstock reduced plant height and crown diameter and caused rosette, led to an increase in the number of leaves. The most effective level of nitrogen in sour oranges was 80 mg kg-1 nitrogen. Application of 80 mg kg-1 nitrogen and 2.5% compost, and 80 mg kg-1 nitrogen and 5% compost led to the highest number of leaves in citrumelo and citrange rootstocks, respectively.
Conclusion: According to vegetative growth and concentration of nutrients data, especially from the nitrogen concentration point of view, maximum vegetative growth was obtained in citrumelo rootstock from 2.5% compost and 40 mg kg-1 nitrogen treatment and in citrange and sour orange rootstocks from 2.5% compost and 80 mg kg-1 nitrogen treatment.

کلیدواژه‌ها [English]

  • Citrange
  • Citrumelo
  • Leaf nutrient composition
  • Sour orange
  • Vegetative growth
  • Asadi Kangarshahi A., Malakouti M.J., and Emdad M.R. 2004. Effect of Irrigation Methods and Balanced Fertilization on The Yield and Water Use Efficiency of Citrus in Mazandaran. Iranian Journal of Soil and Waters Sciences 18(2): 193-197. (In Persian with English abstract)
  • Bhogal A., Nicholson F.A., Chambers B.J., and Shepherd M.A. 2003. Effects of past sewage sludge additions on heavy metal availability in light textured soils: implications for crop yields and metal uptakes. Environmental Pollution 121(3): 413-423.
  • Blake L., Mercik S., Koerschens M., Goulding K.W.T., Stempen S., Weigel A., Poulton P.R., and Powlson D.S. 1999. Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments. Plant and Soil 2: 1-14.
  • Cáceres R., Malińska K., and Marfà O. 2018. Nitrification within composting: a review. Waste Management 72: 119-137.
  • Ch’ng H.Y., Haruna A.O., Majid N.M.N.A., and Jalloh M.B. 2019. Improving soil phosphorus availability and yield of Zea mays using biochar and compost derived from agro-industrial wastes. Italian Journal of Agronomy 141: 34-42.
  • Chen H., Jia Y., Xu H., Wang Y., Zhou Y., Huang Z., Yang L., Li Y., Chen L.-S., and Guo J. 2020. Ammonium nutrition inhibits plant growth and nitrogen uptake in citrus seedlings. Scientia Horticulturae 272: 1-10.
  • Dubey A.K., and Sharma R.M. 2016. Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm). Scientia Horticulturae 200: 131-136.
  • Ebadzadeh H., Ahmadi K., Mohammadinia Afrozi S., Abbastaghani R., Abbasi M., and Yari S. 2018. Agricultural Statistics of 2014-2015 Crop Year. Retrieved Aguset 29, 2020. Ministry of Agriculture Jihad. Tehran. Iran, from: https://maj.ir/Dorsapax/userfiles/Sub65/amarnamehj2-96-site.pdf (In Persian with English abstract)
  • Emami A. 1996. Methods of Plant Analysis (Vol. 2). Soil and Water Research Institute, 282p. (In Persian)
  • Estrada-Bonilla G.A., Durrer A., and Cardoso E.J. 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Applied Soil Ecology 157: 103760. 1-9.
  • Florissen P. 1999. New Valencia Clones, Common Orange Varieties and Rootstocks for Improved Fresh Juice Production. Gordon, N.S.W: Horticultural Research and Development Corporation, 124p.
  • Food and Agriculture Organization. 2020. FAOSTAT. Crops country data. Food and Agriculture Organization of the United Nations. Available from: http://faostat.fao.org/site/339/default.aspx.
  • França N.d.O., Girardi E.A., Amorim M.D.S., Gesteira A.D.S., Passos O.S., and Soares Filho W.D.S. 2018. Plant growth, yield and fruit quality of Piemonte tangor grafted onto 14 rootstocks on the northern coast of the state of Bahia, Brazil. Revista Brasileira de Fruticultura 40(4): 1-8.
  • Gran Malik S., Shahsavani S., and Gharanjik S. 2017. Study on the effect of chemical fertilizer and manure on the chemical properties of orange leaf (Thompson Novel). Soil Management and Sustainable Production 7(3): 91-106. (In Persianwith English abstract )
  • Hartmann H.T., and Kester D. E. 2010. Plant Propagation: Principles and Practices. 8th Pearson Prentice-Hall, 880p.
  • Hemantaranjan A. 2009. Physiology and biochemical significance of zinc in plants. In: Hemantaranjan A. (Ed.), Advancement in Micronutrient Research, Scientific Publishers 151-178.
  • Hemmat A., Aghilinategh N., Rezainejad Y., and Sadeghi M. 2010. Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil and Tillage Research 108(1): 43-50.
  • Liang Yongchao Jin Si, Miroslav Nikolic Yu Peng, Wei Chen and Yun Jiang. 2005. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biology and Biochemistry 37(6): 1185-1195.
  • Martínez-Cuenca M.-R., Primo Capella A., and Forner-Giner M. 2016. Influence of Rootstock on Citrus Tree Growth: Effects on Photosynthesis and Carbohydrate Distribution, Plant Size, Yield, Fruit Quality, and Dwarfing Genotypes. In: E. Rigoblo (Ed.), Plant Growth, IntechOpen 107-129.
  • Martinez-Cuenca M.R., Primo-Capella A., Quinones A., Bermejo A., and Forner-Giner M.A. 2017. Rootstock influence on iron uptake responses in Citrus leaves and their regulation under the Fe paradox effect. PeerJ, 5:1-25.
  • Mousavi Dehmoradi S.Z., Gholami M., and Boninasab B. 2015. Investigating the effect of vermicompost fertilizer on the growth of sour orange (Citrus aurantium) rootstock. In: Proceedings of the 9th Horticulture Congress, 25-28 January., Shahid Chamran University of Ahvaz, Iran, pp. 212-214.
  • Naranjboni F.H., Ebrahimi R., Moradi B., and Raiesi T. 2018. Effect of fertilizer type and its source on nutrients distribution in kiwifruit leaves and fruit. Journal of Water and Soil 32(1): 59-72. (In Persian with English abstract)
  • Obreza T.T., and Morgan K.T. 2008. Nutrition of Florida Citrus Trees. 2nd EDIS, Florida, 100p.
  • Padmavathiamma P., Li, L., and Kumari U. 2008. An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology 99: 1672-1681.
  • Quaggio J.A., Souza T.R., Bachiega Zambrosi F.C., Marcelli Boaretto R., and Mattos Jr D. 2014. Nitrogen‐fertilizer forms affect the nitrogen‐use efficiency in fertigated citrus groves. Journal of Plant Nutrition and Soil Science 1773: 404-411.
  • Raiesi T., Asadi Kangarshahi A., and Golmohammadi M. 2018. Evaluation of nutrient accumulation and translocation indices in three citrus rootstocks. Journal of Land Management 5(2): 137-150. (In Persian)
  • Ravi S., Channal H., Hebsur N., and Dharmatti P. 2010. Effect of sulphur, zinc and iron nutrition on growth, yield, nutrient uptake and quality of safflower (Carthamus tinctorius). Karnataka Journal of Agricultural Sciences 21(3): 382–385.
  • Roosta H.R., Sajjadinia A., Rahimi A., and Schjoerring J.K. 2009. Responses of cucumber plant to NH4+ and NO3−nutrition: the relative addition rate technique vs. cultivation at constant nitrogen concentration. Scientia Horticulturae 121(4): 397-403.
  • Sadeghi H., Ali M., and Firouzjaei H. 2018. Effect of citrange, citromello and sour orange rootstocks on some morphological and physiological characteristics and minerals absorbance of limequat. Journal of Crops Improvement 20(1): 101-112. (In Persian with English abstract)
  • Sahrawat K. 2008. Factors affecting nitrification in soils. Communications in Soil Science and Plant Analysis 399(10): 1436-1446.
  • Serna M., Borras R., Legaz F., and Primo-Millo E. 1992. The influence of nitrogen concentration and ammonium/nitrate ratio on N-uptake, mineral composition and yield of citrus. Plant and Soil 147(1): 13-23.
  • Sikora L.J., and Szmidt R.A. 2001. Nitrogen sources, mineralization rates, and nitrogen nutrition benefits to plants from composts. In: P. J. Stoffella and A. K. Brian (Eds.), Compost utilization in horticultural cropping systems, CRC Press, pp.287-305.
  • Soil survey laboratory staff. 1996. Soil Survey laboratory methods manual. Version 3. Soil Survey investigation. Rep. No. 42. USDA. NRCS. Lincoln, NE. p. 643.
  • Song Y., Song C., Hou A., Ren J., Wang X., Cui Q., and Wang M. 2018. Effects of temperature and root additions on soil carbon and nitrogen mineralization in a predominantly permafrost peatland. Catena 165: 381-389.
  • Toplu C., Uygur V., Kaplankıran M., Demirkeser T.H., and Yıldız E. 2012. Effect of citrus rootstocks on leaf mineral composition of ‘okitsu’, ‘clausellina’, and ‘silverhill‘.mandarin cultivars. Journal of Plant Nutrition 35: 1329–1340.
  • Turrión M.B., Bueis T., Lafuente F., López O., San José E., Eleftheriadis A., and R. Mulas 2018. Effects on soil phosphorus dynamics of municipal solid waste compost addition to a burnt and unburnt forest soil. Science of The Total Environment 642: 374-382.
  • Vojodi Mehrabani L., Valizadeh Kamran R., and Hassanpouraghdam M.B. 2017. The Effects of Relative Substitution of Organic Fertilizers on Elementes Content, Some Physiological Traits and Yield of Lepidium sativum, Journal of Agricultural Science and Sustainable Production 27(3): 63-72. (In Persian with English abstract)
  • Waling I., Van Vark W., Houba V.J.G., and Van der Lee J.J. 1989. Soil and plant analysis, a series of syllabi: Part 7. Plant Analysis Procedures Wageningen Agriculture University.
  • Wutscher H., and Bowman K. 1999. Performance of Valencia'Orange on 21 Rootstocks in Central Florida. HortScience 34(4): 622-624.
  • Xiao R., Awasthi M.K., Li R., Park J., Pensky S.M., Wang Q., and Zhang Z. 2017. Recent developments in biochar utilization as an additive in organic solid waste composting: a review. Bioresource Technology 246: 203-213.
  • Zhao, Cai Z., and Xu Z. 2007. Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China? Plant and Soil 297(1): 213-221.
  • Zhou X., Jia Z., and Wang D. 2018. Effects of limited phosphorus supply on growth, root morphology and phosphorus uptake in citrus rootstocks seedlings. International Journal of Agriculture and Biology 202: 431-436.