دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه بین المللی امام خمینی (ره)، قزوین

2 گروه علوم و مهندسی آب دانشگاه بین المللی امام خمینی (ره)

چکیده

ارزیابی مدل­های گیاهی در بخش کشاورزی توسط بسیاری از پژوهشگران انجام شده است. تعیین مدل گیاهی مناسب برای برنامه­ریزی و پیش­بینی واکنش گیاهان زراعی در مناطق مختلف ضروری است. این عمل سبب می­شود با صرف هزینه و وقت کمتر بتوان اثر عوامل مختلف را بر عملکرد و کارایی مصرف آب گیاهان بررسی کرد. با توجه به اینکه معادله FAO-56 بعنوان روش مرجع برای برآورد ET در مدل AquaCrop استفاده می­شود و به دلیل تعداد ورودی زیاد استفاده از آن دشوار است. روش­های دیگری همچون روش­های دمایی و تشعشعی وجود دارد که با حداقل داده ورودی می‌توان ET را با همان میزان دقت برآورد کرد. با توجه به اهمیت این موضوع، تحقیق حاضر به منظور بررسی دقت و کارایی مدل AquaCrop در شبیه­سازی تبخیروتعرق و زیست­توده، تحت تأثیر روش­های مختلف دمایی (بلانی-کریدل و هارگریوز-سامانی) و تشعشعی (پریستلی-تیلور، مک­کینک و تورک) برآورد تبخیروتعرق مرجع در پنج ایستگاه (ارومیه، قزوین، رشت، یزد و مشهد) و چهار اقلیم (خشک، نیمه خشک، مرطوب و نیمه مرطوب) مختلف در ایران و برای گیاه گندم انجام شد. طبق نتایج، روش بلانی-کریدل با مقدار R2 بیشتر از 5/0، NRMSE در محدوده 10-0 درصد (عالی) و شاخص NS نزدیک به یک (99/0) و روش تورک با مقدار R2 بیشتر از 5/0، NRMSE در محدوده 50-10 درصد و شاخص NS برابر با 9/0 روش‌های مناسب برای شبیه­سازی تبخیروتعرق در تمام ایستگاه­ها بودند. در مورد شبیه­سازی زیست­توده، روش­های بلانی-کریدل و هارگریوز-سامانی با مقادیر R2 برابر با 9/0، NRMSE در محدوده 10-0 درصد (عالی) و شاخص NS برابر با 99/0 بعنوان روش­های دمایی مناسب و روش­های پریستلی-تیلور، مک­کینک و تورک با آماره­های R2 برابر 9/0، NRMSE در محدوده 10-0 درصد (عالی) و شاخص NS برابر با 99/0 بعنوان روش‌‌های تشعشعی مناسب انتخاب شدند. در این پژوهش دقت خوب مدل AquaCrop در شبیه­سازی تبخیروتعرق و زیست­توده با این روش­های برآورد تبخیروتعرق نسبت به سایر روش­ها نشان داده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of the Influence of Different ETO Estimation Methods in Simulation of Wheat Actual Evapotranspiration and Biomass by AquaCrop Model

نویسندگان [English]

  • H. Ramezani Etedali 1
  • F. Safari 2

1 Department of Water Sciences and Engineering, Faculty of Agricultural and Natural Resources, Imam Khomeini International University, Qazvin, Iran

2 Department of Water Sciences and Engineering, Faculty of Agricultural and Natural Resources, Imam Khomeini International University, Qazvin, Iran

چکیده [English]

Introduction
Evaluation of plant models in agriculture has been done by many researchers. The purpose of this work is to determine the appropriate plant model for planning and predicting the response of crops in different regions. This action is made it possible to study the effect of various factors on the performance and efficiency of plant water consumption by spending less time and money. Since the most important agricultural product in Iran is wheat, so proper management of wheat fields has an important role in food security and sustainable agriculture in the country. The main source of food for the people in Iran is wheat and its products, and any action to increase the yield of wheat is necessary due to limited water and soil resources. Evapotranspiration is a complex and non-linear process and depends on various climatic factors such as temperature, humidity, wind speed, radiation, type and stage of plant growth. Therefore, in the present study, by using daily meteorological data of Urmia, Rasht, Qazvin, Mashhad and Yazd stations, the average daily evapotranspiration values based on the results of the FAO-Penman-Monteith method are modeled and the accuracy of the two methods temperature method (Hargreaves-Samani and Blaney-Criddle) and three radiation methods (Priestley-Taylor, Turc and Makkink) were compared with FAO-56 for wheat.
Materials and Methods
The present study was conducted to evaluate the accuracy and efficiency of the AquaCrop model in simulation of evapotranspiration and biomass, using different methods for estimation reference evapotranspiration in five stations (Urmia, Qazvin, Rasht, Yazd and Mashhad). Four different climates (arid, semi-arid, humid and semi-humid) were considered in Iran for wheat production. The equations used to estimate the reference evapotranspiration in this study are: Hargreaves-Samani (H.S), Blaney-Criddle (B.C), Priestley-Taylor (P.T), Turc (T) and Makkink (Mak). Then, the results were compared with the data of the mentioned stations for wheat by error statistical criteria including: explanation coefficient (R2), normal root mean square error (NRMSE) and Nash-Sutcliffe index (N.S).
Results and Discussion
The value of the explanation coefficient (R2) of simulation ET and biomass in the Blaney-Criddle method is close to one, which shows a good correlation between the data. The NRMSE and Nash-Sutcliffe values for both parameters and the five stations are in the range of 0-20 and close to one, respectively, which indicates the AquaCrop model's ability to simulate ET and biomass. On the other hand, the value of R2 in the Hargreaves-Samani method for biomass close to one, NRMSE in the range of 0-10 and Nash-Sutcliffe index is more than 0.5, which indicates a good simulation. The NRMSE index in the evaluation of ET and biomass wheat is excellent for the Blaney-Criddle method and about Hargreaves-Samani for ET is poor and for the biomass is excellent.
The Turc method with NRMSE in the range of 0-30, explanation coefficient close to or equal to one and a Nash-Sutcliffe index of one or close to one can be used to simulate ET and biomass at all five stations. Also, for biomass simulation, Priestley-Taylor and Makkink methods have acceptable statistical values in all five stations.
Based on the value of explanation coefficient (R2) of estimation ET and biomass wheat for radiation methods, the correlation between the data in all three radiation methods is high. Percentage of NRMSE index of Makkink method for wheat in ET evaluation in Qazvin station is poor category and in Urmia and Rasht is good and in Mashhad and Yazd is moderate and about biomass in all five stations (Qazvin, Rasht, Mashhad, Urmia and Yazd) is excellent category, the error percentage of Priestley-Taylor method for wheat in ET evaluation in Yazd station is good and the rest of the stations is poor, about biomass is excellent in all five stations (Qazvin, Rasht, Mashhad, Urmia and Yazd). The error rate of Turc method for wheat in ET evaluation in Urmia, Rasht and Mashhad stations is good and in Qazvin and Yazd is poor and about biomass is excellent in all five stations (Qazvin, Rasht, Mashhad, Urmia and Yazd).
Conclusion
According to the results obtained using Blaney-Criddle method with R2 value close to one, NRMSE in the range of 0-20% (excellent to good) and Nash-Sutcliffe index close to one and Turc method with R2 value close to one, NRMSE in the range of 0-10% (excellent) and Nash-Sutcliffe index close to one was showed a good accuracy of AquaCrop model in simulation of evapotranspiration and biomass with these methods of estimation of evapotranspiration compared to other methods.

کلیدواژه‌ها [English]

  • AquaCrop
  • Blaney-Criddle
  • Plant model
  • Reference Evapotranspiration
  • Turc
  1. Abdollahzadeh, M., Ramezani etedali, H., Ababaei, B., & Nazari, B. (2019). Estimation of actual evapotranspiration and net irrigation water requirement for strategic agricultural crop in Moghan plain using AquaCrop model. Nivar 43(104-105): 113-122. (In Persian with English abstract). https://doi.org/10.30467/nivar.2019.141476.1101.
  2. Ahmadi, K., Gholizadeh, H., Ebadzadeh, H., Hosseinpour, R., Abdshah, H., Kazemian, A., & Rafiei, M. (2017). Agricultural statistics (crops). Ministry of Agriculture 1: 5-20. (In Persian)
  3. Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper No. 56, FAO, Rome, Italy, 300 pp.
  4. Alizadeh, H.A., Nazari, B., Parsinejad, M., Ramezani, H., Eetedali, H.R., & Janbaz, H.R. (2010). Evaluation of AquaCrop Model on wheat deficit irrigation in Karaj area. Iranian Journal of Irrigation and Drainage 4(2): 273-283. (In Persian with English abstract). https://doi.org/22059/ijswr.2019.267026.668022.
  5. Amiri, E., Bahrani, A., Khorsand, A., & Haghjoo, M. (2015). Evaluating Aquacrop model performance to predict grain yield and wheat biomass, under water stress. Water and Soil Science (Agricultural Science), 25(4/2): 217-229. (In Persian with English abstract)
  6. Asareh, A., & Davoudi, H. (2014). Evaluating the methods of estimating potential evapotranspiration in Omidiyeh Town. Journal of Water Science and Engineering 10(4): 63-74. (In Persian)
  7. Babazadeh, H., & Sarai Tabrizi, M. (2012). Assessment of AquaCrop model under soybean deficit irrigation management conditions. Journal of Water and Soil 26(2): 329-339. https://doi.org/22067/jsw.v0i0.14156.
  8. Bannayan, M., & Hoogenboom, G. (2009). Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research 111: 290-302.
  9. Blaney, H.F., & Criddle, W.D. (1950). Determining water requirements in irrigated areas from climatologically and irrigation data. Washington Soil Conservation Service (SCS). (Vol. 96).
  10. Cobaner, M., Citakoğlu, H., Haktanir, T., & Kisi, O. (2017). Modifying Hargreaves–Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey. Hydrology Research 48(2): 480-497. https://doi.org/10.2166/nh.2016.217.
  11. (1998). Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements). Irrigation and Drainage Paper No.56.
  12. Ghaffari, A., Ghasemi, V., & De Pauw, V. (2004). Agricultural climate zone classification with UNESCO method. Drought and Drought 12: 30-35.
  13. Gassman, P.W., Reyes, M.R., Green, C.H., & Arnold, J.G. (2007). The soil and water assessment tool: historical development, applications, and future research directions. Trans. ASABE 50(4): 1211-1250.
  14. Hargreaves, G.H., & Samani, Z.A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1(2): 96–99.
  15. Iqbal, M.A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A., & Rio, S. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management 135: 61-72.
  16. Jamieson, P.D., Porter, J.R., & Wilson, D.R. (1991). A test of computer simulation model ARG-WHEAT1 on wheat crops in New Zealand. Field Crops Research 27: 337-350.
  17. Joinior, W., Loireau, M., Fargette, M., Filho, B., & Wele, A. (2017). Correlation between soil erodibility and satellite data on areas of current desertification: a case study in Senegal. Ci Trop Recife 42(2): 51-66.
  18. Jorenush, M., Boroomand nasab, S., Naseri, A., Pakparvar, M., & Taghvaeian, S. (2019). AquaCrop evaluation to simulate wheat production and plantig date in Fars province. Journal of Water and Irrigation Management 9(1): 95-107. (In Persian with English abstract). https://doi.org/22059/JWIM.2019.287266.701.
  19. Kahkhamoghadam, P. (2017). Evaluation of reference evapotranspiration models for warm arid climate (Case study: Zahedan station). Journal of Water and Soil Conservation 25(1): 309-317. (In Persian with English abstract). https://doi.org/10.22069/jwsc.2018.11565.2603.
  20. Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W., & Pruitt, W.O. (2002). Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering-ASCE 128(4): 224-233.
  21. Kumar, P., Sarangi, A., Singh, DK., & Parihar, SS. (2014). Evaluation of AquaCrop model in predicting wheat yield and productivity under irrigated saline regimes. Irrigation and Drainage 63: 474-487. https://doi.org/1002/ird.1841.
  22. Mabhaudhi, T., Modi, A.T. and Beletse, Y.G. 2014. Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace. Agricultural and Forest Meteorology 192-193: 132-139. https://doi.org/1016/j.agrformet.2014.03.013.
  23. Makkink, F. (1957). Testing the Penman Formula by Means of Lysimeters. Journal of the Institution of Water Engineers 11(3): 277-288.
  24. Naderi, N., & Alizadeh, A. (1998). Determining reference crop evapotranspiration in Mashad and comparing with empirical methods. MSc Thesis, Ferdowsi University of Mashhad. 110 pp. (In Persian)
  25. Nandagiri, L., & Kovoor, G.M. (2005). Sensitivity of the food and agriculture organization Penman-Monteith evapotranspiration estimates to alternative procedures for estimation of parameters. Journal of Irrigation and Drainage Engineering 131(3): 238-248.
  26. Nash, J.E., & Sutcliffe, J. (1970). River flow forecasting through conceptual models, Part 1, A discussion of principles. Journal of Hydrology 10: 282–290.
  27. Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science 313(5790): 1068–1072.
  28. Pashakhah, P., Pirmoradiyan, N., Khazdouz, N., & Moshfegh, M. (2014). Calibration and evaluation of three empirical methods for estimating reference evapotranspiration in deferent climates of Iran. Nivar. 38(87-86): 39-50. (In Persian with English abstract)
  29. Priestley, H.B., & Taylor, R.J. (1972). On the assessment of surface heat Flux and evaporation using large scale parameters. Monthly Weather Review 100(2): 81-92.
  30. Raes, D., Steduto, P., Hsiao, TC., & Freres, E. (2012). Refrence manual AquaCrop, FAo, land and water division. rome Italy.
  31. Raes, D., Steduto, P., Hsiao, TC., & Freres, E. (2022). Refrence manual AquaCrop, FAo, land and water division. rome Italy.
  32. Roshan, G., Khoshakhlagh, F., & Karampur, M. (2012). Assessing, modifying and synthesizing a suitable model for estimation of potential evapotranspiration in Iran. Physical Geography Research Quarterly 43(78): 49-68. (In Persian with English abstract)
  33. Safari, F., Kaviani, A., Azizian Ghatar, A., & Ramezani Etedali, H. (2021). Modified the coefficients of Hargreaves-Samani, Blaney-Criddle, Priestley-Taylor, Makkink and Turk equations to estimate the evapotranspiration of the reference plant. Environment and Water Engineering. (In Persian with English abstract). https://doi.org/10.22034/jewe.2021.293310.1593.
  34. Sayyadi, H., Oladghaffari, A., Faalian, A., & Sadraddini, A. (2009). Comparison of RBF and MLP neural networks performance for estimation of reference crop evapotranspiration. Water and Soil Science 19(1): 1-12. (In Persian with English abstract)
  35. Tavakoli, E., Ghahraman, B., Davari, K., & Ansari, H. (2013). Estimation of reference evapotranspiration with incomplete data (a case study: North Khorasan Province). Journal of Water and Soil Science (JWSS) 17(65): 211-221. (In Persian with English abstract). https://doi.org/1001.1.24763594.1392.17.65.12.4.
  36. Turc, L. (1961). Estimation of irrigation water requirements, potential evapotranspirtion: A simple climate formula evolved up to date. Annales Agronomiques 12: 13-49.
  37. Vanuytrecht, E. (2014). AQUACROP: FAO crop water productivity yield response model. Environmental Modelling and Software 62: 351-360. https://doi.org/10.1016/j.envsoft.2014.08.005.
  38. Vicente-Serrano, S.M., Azorin-Molina, C., & Sanchez-Lorenzo, A. (2014). Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011). Water Resources Research 50(11): 8458–8480. https://doi.org/10.1002/ 2014WR015427.
  39. Wu, D., Fang, S., & Li, X. (2019). Spatial-temporal variation in irrigation water requirement for the winter wheat summer maize rotation system since the 1980s on the North China Plain. Agricultural Water Management 214: 78–86. https://doi.org/1016/j.agwat.2019.01.004.
  40. Zand-Parsa, S., Parvizi, S., Sepaskhah, A.R., & Mahbod, M. (2016). Evaluation of simulated soil water content, dry matter and grain yield of winter wheat (cv. Shiraz) using WSM and AquaCrop models. Journal of Water and Soil Science (JWSS) 20(77): 59-70. (In Persian with English abstract). https//doi.org/18869/acadpub.jstnar.20.77.59.

 

CAPTCHA Image