تأثیر استخراج سنگ آهن بر غلظت برخی از فلزات سنگین و پهنه‌بندی آلودگی خاک (مطالعه موردی: معدن سنگ آهن سنگان، خواف-ایران)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد

2 گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و محیط‌زیست، دانشگاه فردوسی مشهد

3 گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد

4 دانشکده بهداشت، دانشگاه علوم پزشکی مشهد، ایران

چکیده

این پژوهش با هدف ارزیابی اثرات برخی از فلزات سنگین همچون سرب، آهن، نیکل، مس، آرسنیک و پهنه‌بندی آلودگی خاک ناشی از آنها در مناطق اطراف معدن سنگ آهن سنگان شهرستان خواف در خراسان رضوی انجام شد. جهت انجام این تحقیق، تعداد 60 نمونه خاک از عمق (0-20) سانتی‌متری به صورت سیستماتیک و از دو منطقه مجاور معدن و شاهد برداشت شد. غلظت فلزات سنگین با استفاده از دستگاه پلاسمای جفت شده القایی-آزمون طیف‌سنجی نشر نوری (ICP-AES) اندازه‌گیری گردید. آزمون‌ نرمال بودن داده‌ها به صورت استنباطی با استفاده از آزمون‌ پارامتریک t مستقل و ضریب همبستگی پیرسون انجام شد. برای کمّی نمودن میزان آلودگی خاک به فلزات سنگین، از شاخص‌های ژئوشیمیایی همچون فاکتور آلودگی، شاخص بارآلودگی و فاکتور غنی‌شدگی استفاده گردید. نقشه پهنه‌‌بندی بار آلودگی منطقه مجاور معدن و همچنین نقشه متوسط غنی‌شدگی عنصر سرب و آرسنیک نیز با استفاده از روش‌های درون‌یابی در محیط ArcGIS تهیه شد. نتایج بدست آمده نشان داد که میانگین غلظت عناصر آرسنیک، مس، نیکل، سرب و آهن در منطقه مجاور معدن به ترتیب 7/12، 5/25، 5/34، 6/48، 38860 میلی‌گرم بر کیلوگرم و در منطقه شاهد به ترتیب 5/8، 9/15، 1/32، 9/16، 29110 میلی‌گرم بر کیلوگرم بوده است. مقایسه ضریب تغییـرات فلـزات سنگین نیز نشان داد کـه بیشـترین مقدار این ضـریب مربوط به عنصر سرب با 8/42 درصد و سـایر فلـزات در منطقه مجاور معدن نیـز پراکنـدگی نسـبتاً بـالایی را نسبت به منطقه شاهد داشته‌اند. در آزمون t مستقل، مشاهده شد که مقدار سطح معنی‌داری (p-value) در همه عناصر به غیر از عنصر نیکل کمتر از 05/0 بوده که بیانگر اختلاف معنی‌دار میانگین غلظت‌ها بین منطقه شاهد و منطقه مجاور معدن می‌باشد. بر اساس بررسی‌های صورت گرفته همبستگی بین عنصر سرب با متغیر‌های نیکل، مس و آرسنیک از نوع معکوس بوده و همبستگی مثبت و بسیار قوی بین آهن با مس و نیکل به ترتیب با مقدار 8/0 و 76/0 و نیکل با مس با مقدار 82/0 وجود دارد. ضریب آلودگی عنصر سرب در منطقه مجاور معدن، مقادیر آلودگی متوسط تا قابل توجه را نشان داد که نسبت به سایر عناصر از آلودگی بیشتری برخوردار می‌باشد. عنصر سرب و آرسنیک در منطقه مجاور معدن، غنی‌شدگی متوسط تا نسبتاً شدید را نشان دادند. مقایسه نتایج بدست آمده از آنالیز نمونه‌های خاک‌ در دو منطقه شاهد و مجاور معدن با یکدیگر نشان از افزایش غلظت فلزات سنگین آهن، سرب، آرسنیک و مس در منطقه مجاور معدن‌کاری بوده است. میانگین غلظت عنصر آرسنیک و آهن احتمال بروز سمیت در آینده را هشدار می‌دهد. حضور دو عنصر مس و نیکل در خاک منطقه تحت تأثیر عوامل طبیعی و زمین‌زاد است. درنتیجه می‌توان به این مهم دست یافت که در صورتی که آلاینده‌های حاصل از معدن‌کاری سنگ آهن در مناطق مجاور معدن کنترل نشود و به دنبال آن روند بیابان‌زایی تکنوژنیک مهار نگردد. علاوه بر بروز مشکلات زیست‌محیطی متعدد تأثیر شگرفی بر بوم نظام منطقه خواهد گذاشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Impact of Iron Ore Mining on the Concentration of some Heavy Metals and Soil Pollution Zoning (Case Study: Sangan Iron Ore Mine, Khaf-Iran)

نویسندگان [English]

  • Reyhaneh Kashtabeh 1
  • M. Akbari 2
  • Ava Heidari 3
  • Aliasghar Najafpour 4
1 Faculty Natural Resources and Environment. Ferdowsi University of Mashhad. Mashhad, Iran
2 Dept. of Desert Areas Management,, Ferdowsi University of Mashhad, Iran.
3 Department of Environmental Science, Faculty Natural Resources and Environment. Ferdowsi University of Mashhad. Mashhad, Iran
4 Faculty of Health, Mashhad University of Medical Sciences, Iran
چکیده [English]

Introduction
One of the most fundamental global environmental challenges in the past two decades has been the issue of soil pollution and degradation. Soil, as an important environmental element, has played a significant role in food production, human health, and living organisms, but various factors, by both human and naturally have destroyed it. The exploitation of natural resources with activities such as mining and quarrying, as an anthropogenic action (caused by human activities), is one of the most important factors of human intervention in nature and also one of the environmental hazards of soil degradation, which has caused the spread of desertification. Sangan iron mines in Khaf city are the largest mines in the northeast of Iran. According to the geomorphological disturbances caused by the activity of Khaf iron ore mines and the geological composition of the region, there is a potential for causing pollution and destroying the soil around the mine. This research was conducted with the aim of evaluating the impact of mining activity on concentration of some heavy metals such as lead, iron, nickel, copper, and arsenic in the soil around the iron ore mine in Sangan area of Khaf city in Khorasan Razavi province. Realizing the polluted hotspots due to the concentration of heavy metals, as one of the important signs of soil pollution and the spread of desertification, is one of the goals of this research, and the results can be effective in making appropriate management decisions to prevent soil pollution and further destruction.
Materials and Methods
In order to conduct this research, 60 soil samples were systematically taken from a depth of 0-20 cm from two areas adjacent to the mine and control. The concentration of aqua regia extracted heavy metals was measured using an inductively coupled plasma-optical emission spectroscopy (ICP-OES). In the first stage, the results were descriptive, and in the second part, after performing tests related to the normality of the data, they were inferential using the parametric independent t-test and Pearson's correlation coefficient in the statistical environment of the SPSS software. In order to quantify the level of soil contamination with heavy metals, geochemical indices including contamination factor, pollution load index, and enrichment factor were used. The pollution load zoning map of the area adjacent to the mine as well as the average enrichment map of lead and arsenic elements were prepared using the inverse distance weighting interpolation method in the ArcGIS environment.
Results and Discussion
The results of this research showed that the average concentrations of arsenic, copper, nickel, lead, and iron elements in the area near the mine were 12.71, 25.54, 34.59, 48.64, and 38860 mg/kg and in the control area were 8.57, 15.97, 32.13, 16.96, 29110 mg/kg, respectively. The comparison of the coefficient of variation (dispersion criterion) of heavy metals showed that the highest coefficient of variation among the metals is related to the lead with a value of 42.8%, as well as the coefficient of variation for other metals in the area adjacent to the mine also has a relatively high dispersion compared to the control area. In addition, it was found in all elements except for nickel (p<0.05), which indicates a significant difference in the average concentrations between the control area and the area adjacent to the mine. The correlation between lead element and nickel, copper and arsenic variables was inverse and there was a positive and very strong correlation between iron and copper and nickel with values of 0.8 and 0.76 respectively and nickel and copper with values of 0.82. The pollution coefficient of the lead elements in the area adjacent to the mine showed moderate to significant pollution levels, which is more polluted than other elements. The pollution load in the area near the mine showed that the value of this index was greater than one in the samples closer to the mining areas, which indicates the high contamination of the surface soil with these elements. Lead and arsenic elements in the area adjacent to the mine showed moderate to relatively intense enrichment. From the examination of all the pollution indicators used in this research, as well as the positive and very strong correlation between copper and nickel, the presence of these two elements in the soil of the study area showed no pollution. The comparison of the results obtained from the analysis of soil samples in the two areas of the control and adjacent to the mine showed an increase in the concentration of heavy metals (iron, lead, and arsenic, copper) in the area adjacent to the mining.
Conclusion
The results obtained from the analysis of soil samples and pollution indicators in the two control areas adjacent to the Sangan iron ore mine in Khaf city showed that the presence of iron ore industrial and mining sites in the study area and the spread of its wastes and tailings by seasonal and local winds, as well as the activities of humanity and the spread of these pollutants to other areas, can be one of the main reasons for the increase in the concentration of metal pollutants in the soils of this region.

کلیدواژه‌ها [English]

  • Desertification
  • Human activities
  • Heavy metals
  • Soil contamination indicators
  1. Adomako, D., Nyarko, B.J.B., Dampare, S.B., Serfor Armah, Y., Osae, S., Fianko, J.R., & Akaho, E.H. (2008). Determination of toxic elements in waters and sediments from River Subin in the Ashanti Region of Ghana”. Environmental Monitoring Assessment 141: 165-175.
  2. Aggarwal, C.C. (2017). An Introduction to Outlier Analysis. In: Outlier Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-47578-3_1.
  3. Akbari, M., Ownegh, M., Asgari, H., Sadoddin, A., & Khosravi, H. (2016). Soil erosion risk assessment using the CORINE model (Case study: Semiarid region in Golestan Province). Desert Ecosystem Engineering Journal 12(5): 63–78. (In Persian with English abstract)
  4. Akbari, M., Jafari Shalamzari, M., Memarian, H., & Gholami, A. (2020a). Monitoring desertification processes using ecological indicators and providing management programs in arid regions of Iran. Ecological Indicicator 111: 106011. https://doi.org/10.1016/j.ecolind.2019.106011.
  5. Akbari, M., Feyzi Koushki, F., Memarian, H., Azamirad, M., & Noughani, M. (2020b). Prioritizing effective indicators of desertification hazard using factor-cluster analysis, in arid regions of Iran. Arabian Journal of Geosciences 13(8): 1-17. https://doi.org/10.1007/s12517-020-05296-9.
  6. Aluko, T.S., Njoku, K.L., Adesuyi, A.A., & Akinola, M.O.(2018). Health risk assessment of heavy metals in soil from the iron mines of Itakpe and Agbaja, Kogi State, Nigeria. Pollution 4(3): 527-538. https://doi.org/10.22059/poll.2018.243543.330.
  7. Chen, F.W., & Liu, C.W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environment 10: 209–222 https://doi.org/10.1007/s10333-012-0319-.
  8. Cocheci, R.M., Iano, I., Sârbu, C.N., Sorensen, A., Saghin, I., & Secăreanu, G. (2019). Assessing environmental fragility in a mining area for specific spatial planning purposes. Moravian Geographical Reports 27(3): 169–182. https://doi.org/10.2478/mgr-2019-0013.
  9. Dabiri, R., Bakhshi Mazdeh, M., & Mollai, H. (2017). Heavy metal pollution and identification of their sources in soil over Sangan iron-mining region, NE Iran. Journal of Mining & Environment 8(2): 277-289. https://doi.org/10.22044/jme.2016.820.
  10. Damian, , Lanzerstorfer, C., Damian, F., & Lepure, G. (2018).Distribution of Heavy Metals and Minerals in the Various Size Fractions of Soil from Copșa Mică România. Water, Air & Soil Pollution 229202. https://doi.org/10.1007/s11270-018-3862-6.
  11. Darwish, T., Khater, C., Jomaa, I., Stehouwer, R., Shaban, A., & Hamze, M. (2011). Environmental impact of quarries on natural resources in Lebanon. Land Degradation & Development 22: 345–358. https://doi.org/10.1002/ldr.1011.
  12. Das, B. (2014). Environmental impact due to iron ore mining in Chhattisgarh. Recent Research in Science and Technology 6(1): 27-29.
  13. Dashti Amirabad, J., Akhvan ghalibaf, M., & khodaparast, R. (2012). The effect of sulphide tailings (pyrite) in desertification around mines and its role in soil contamination with heavy elements. The first national desert conference science, technology and sustainable development. Tehran. (In Persian with English abstract)
  14. FAO/UNEP. (2001). Land Degradation Assessment in Dray land (LAND), United Nations Environment Program, Global Environment Facility (GEF). p.67
  15. Feyzi Koushki, F., Akbari, M., Memarian, H., & Azamirad, M. (2019). Identifying and Ranking Important Factors of Desertification in Khorasan Razavi Province using Delphi Method, Geography and Environmental Hazards 8(31): 205-225. https://doi.org/10.22067/geo.v0i0.84127.
  16. Garavand, M., Ghasemi, H., & Hafezi Moghddas, N. (2012). Geochemical and Environmental Assessment of the Heavy Metals in the Soils Derived from the Gorgan Schists. Scientific Quarterly Journal, GEOSCIENCES 8(22): 35-46.
  17. Golmohammadi, A.,Karimpour, M H., Haidarian Sahahri, M.R., Mazaheri, S.A., & Rahimi, B. (2017). Interpretation of the magnetic anomalies of the western mines of Sangan Ironstone using geology and borehole data. Iranian Journal of Geophysics 11(2): 87-109.
  18. Golmohammadi, A., Karimpour, H., Malekzadeh Shafaroudi, A., & Mazaheri, S.A. (2015). Alterationmineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran. Ore Geology Reviews 65(2): 545–563. https://doi.org/10.1016/j.oregeorev.2014.07.005.
  19. Haghparast, M., & Torshizian, H. (2019).Assessment of heavy metals concentrations and pollution in sediments of Almejogh Ophiolite Region (North-East of Iran).Journal of Environmental Science and Technology 21(4). (In Persian with English abstract)
  20. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. a sedimentological approach, Water Research 14(8): 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8.
  21. Hosseinniaee, S., Jafary, M., Tavili, A., & Zar, S. (2021). Geochemical and ecological assessment of some heavy metals in the soil around the lead and zinc mine in northwestern of Iran. Iran. Journal of Health and Environment 14(1): 159-172. (In Persian with English abstract)
  22. Hubert, H., Akimpaya, B., & Bazimenyea, J. (2019). Evulation of soil contaminiation in mining area of RWANDA. American Journal of Water Science and Engineering 5(1): 9-15. https://doi.org/10.11648/j.ajwse.20190501.12.
  23. Jorfi, S., Maleki, R., Jaafarzadeh, N., & Ahmadi, M. (2017). Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran. Data in Brief 15: 584–590. https://doi.org/10.1016/j.dib.2017.10.017.
  24. Khashtabeh, R., Akbari, M., Heydari, A., & Najafpoor, A. (2021). Investigation of changes in heavy metal concentrations and ecological indicators of soil pollution in the areas around Sangan Khaf mine and its effect on human health risk and increase soil degradation.Sc Thesis. Faculty of Natural Resources and Environment. Ferdowsi University of Mashhad. (In Persian with English abstract)
  25. Khashtabeh, R., Akbari, M., Kolahi, A., & Talebanfard, A. (2020). Assessing the effects of desertification control projects using socio-economic indicators in the arid regions of eastern Iran. Environment, Development and Sustainability 23: 10455–10469. https://doi.org/10.1007/s10668-020-0106-6.
  26. Kowalska, J.B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools forthe comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health 40: 2395–2420. https://doi.org/10.1007/s10653-018-0106-z.
  27. Mazhari, N. (2016).Geology, mineralization, geochemistry, geochronology and isotope studies in eastern anomalies of Sangan mine, Khaf, Khorasan Razavi province. Ph.D. Dissertation. Ferdowsi University of Mashhad Faculty of Sciences. 20-23
  28. Mbaya, R.P. (2013). Land Degradation Due to mining: The gunda scenario. International Journal of Geography and Geology 2(12): 144-158. https://doi.org/10.18488/journal.10/2013.2.12/10.12.144.158.
  29. Nikolaidis, C., Zafariadis, I., Mathiodakis, V., & Constantinidis, T. (2010). Heavy metal pollution associated with an abandoned Lead- Zinc Mine in the Kirki region, NE Greece. Bulletin of Environmental Contamination Toxicolology 85: 307-312. https://doi.org/10.1007/s00128-010-0079-9.
  30. Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., & Li, X. (2018). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere 191: 626-638. https://doi.org/10.1016/j.chemosphere.2017.10.078.
  31. Rakesh Sharma, M.S., & Raju, N.S. (2013). Correlation of Heavy Metal contamination with Soil properties of Industrial areas of Mysore, Karnataka, India by Cluster analysis. International Research Journal of Environment Sciences 2(10): 22-27.
  32. Rastmanesh, F., Moore, F., Kharratikopaei, M., Keshavarzi, B., & Behrouz, M. (2010). Heavy metal enrichment of soil in Sarcheshmeh copper complex, Kerman, Iran. Environmental Earth Sciences 62(2): 329-336.
  33. Ravankhah, N., Mirzaei, R., & Masoum, S. (2015). Evaluation of Geoaccumulation Index, Contamination Factor, and Principal Component Analysis for Estimating Soil contamination. Iranian Journal of Health & Environent 8(3). (In Persian with English abstract)
  34. Rezaeipour Baghdar, A., Vagarfard, H., Azimzadeh, H.R., Gholami, H., & Esmaeilpour, Y. (2015).Study of Pollution of Waste Water Caused by Iron Ore Processing in Desert Areas (Case Study: Bafgh Area). Iranian Scientific Association of Desert Management and Control 4: 14-25. (In Persian with English abstract)
  35. Saadati, E. (2016). Investigating the environmental effects of the extraction of placer iron ore mines in Sangan Khaf region on water and soil resources. Master's thesis. Department of Geology - Environmental Geology. International Campus of Ferdowsi University of Mashhad.
  36. Sahu, H B., & Dash, S. (2011). Land Degradation due to Mining in India and its Mitigation Measures. Second International Conference on Environmental Science and Technology, February 26-28, 2011, Singapore.
  37. Salman, T. (2019). Mapping the Distribution of Heavy Metals in Soils and Plants in Alluvial Plain of the Tigris River, Southern Baghdad. Master's thesis. Ferdowsi University of Mashhad, Faculty of Basic Sciences, Department of Geology, 5:7.
  38. Samuel, K., & Christiana, M.A.O. (2012). Heavy metal pollution around Itakpe mine, Kogi State, Nigeria. International Journal of Physical Sciences 7: 5062-5068.
  39. Sanjari, M. (2017). Determination of Heavy Elements and Environmental Pollution in the Area of Dardvey Iron Mine. Master's thesis. Ferdowsi University of Mashhad, Faculty of Basic Sciences, Department of Geology. 64-65.
  40. Shamsadin, H., Jalali, V., & Jafari, A. (2015).Application of multivariate statistical methods and environmental pollution indices in evaluation of distribution of heavy metals.Journal of Water and Soil Resources Protection 4(3). (In Persian with English abstract)
  41. Shamsaddin, H., Jafari, A., Jalali, V., & Schulin, R. (2020). Spatial distribution of copper and other elements in the soils around the Sarcheshmeh copper smelter in southeastern Iran. Atmospheric Pollution Research 11(10): 1681-1691. https://doi.org/10.1016/j.apr.2020.07.002.
  42. Sistani, N., Moeinaddini, M., Khorasani, N., Hamidian, A.H., Taleshi, M.S., & Azimi Yancheshmeh, R. (2017). Heavy metal pollution in soils adjacent to Kerman steel industry: evaluation of metal richness and degree of pollution. Iranian Journal of Health and Environment 10(1): 75-86. (In Persian with English abstract)
  43. Sutherland, R.A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology 39(6): 611-627. https://doi.org/10.1007/s002540050473.
  44. Taylor, S.R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta 28(8): 1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2.
  45. Taylor, S.R., & McLennan, S.M. (1995). The geochemical evolution of the continental crust. Advancing Earth and Space Science 33(2): 241-265. https://doi.org/10.1029/95RG00262.
  46. Tepanosyan, G., Sahakyan, L., Belyaeva, O., & Asmaryan, S.H. (2018). Continuous impact of mining activities on soil heavy metals levels and human health. Science of The Total Environment 639: 900-909. https://doi.org/10.1016/j.scitotenv.2018.05.211.
  47. Teplická, K., Khouri, S., Beer, M., & Rybárová, J. (2021). Evaluation of the Performance of Mining Processes after the Strategic Innovation for Sustainable Development. Processes 9: 1374. https://doi.org/0.3390/pr9081374.
  48. Thomilson, D.C., Wilson, D.J., Harris, C.R., & Jeffrey, D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33: 566–575. https://doi.org/10.1007/BF02414780.
  49. Turekian, K.K., & Wedepohl, K.H. (1961). Distribution of elements in some major units of the earth crust. The Geological Society of America 72(2): 175-192. https://doi.org/10.1130/0016-7606(1961)72[175.
  50. Wang, L., & Wu, J. (2008). Spatial variability of heavy metals in soils across a valley plain in Southeastern China. Environmental Geology 55(6): 1207-1217.
  51. Wiel, H.J. (2003). Determination of elements by ICP-AES and ICP-MS" (RIVM) Bilthoven, The Netherlands. National Institute of Public Health and the Environment (RIVM) 4-46.
  52. Xiao, Y., Gu, X., & Yin, S. (2016). Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, Northwest China.SpringerPlus 5(425). https://doi.org/10.1186/s40064-016-2073-0.
  53. Xiaoa, R., Wangc, S.H., Lia, R., Wangb, J.J., & Zhanga, Z. (2017). Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety 141: 17–24. https://doi.org/10.1016/j.ecoenv.2017.03.002.
  54. Yang, P., Mao, R., Shao, H., & Gao, Y. (2009). An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. Journal of Hazardous Materials 167(1): 1246-1251. https://doi.org/10.1016/j.jhazmat.2009.01.127.
  55. Yongming, H., Peixuan, D.‚ Junji, C.‚ & Posmentier, E.S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China‚ Science of the Total Environment 355(1– 3): 176–186. https://doi.org/10.1016/j.scitotenv.2005.02.026.
  56. Zanganeh, F., Heidari, A., Sepehr, A., & Rohani, A. (2022). Bioaugmentation and bioaugmentation–assisted phytoremediation of heavy metal contaminated soil by a synergistic effect of cyanobacteria inoculation, biochar, and purslane (Portulaca oleracea). Environmental Science and Pollution Research 29: 6040–6059. https://doi.org/10.1007/s11356-021-16061-0.
  57. Zhang, X.Y., Feng, Y., Jing, T., Ouyang, X.Y., Liang, C., & Weiqi, C. (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China Luoping. Marine Pollution Bulletin 54(7): 974-982.

 

CAPTCHA Image