نوع مقاله : مقالات پژوهشی
نویسندگان
1 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی ساری
3 گروه مهندسی عمران و محیط زیست، دانشگاه هند غربی، ترینیداد و توباگو
چکیده
نیترات یکی از مهمترین آلایندهها در منابع آبی میباشد که سبب بروز مشکلات زیستمحیطی و بهداشتی میشود. این پژوهش با هدف بررسی همدماهای جذب لانگمویر و فروندلیچ، در توصیف جذب نیترات توسط اشکال مختلف زغالهای زیستی انجام شد. در این پژوهش پس از انجام پیشآزمایشات بهینهسازی دوز جاذب در نسبتهای 1/0، 3/0، 5/0، 8/0 و 1 گرم از جاذب و 40 میلیلیتر محلول نیترات، غلظتهای 20، 45، 80، 100، 150 و 200 میلیگرم در لیتر محلول نیترات (از منبع نیترات پتاسیم) مورد بررسی قرار گرفت. تیمارهای آزمایشی شامل زغال زیستی (B)، زغال زیستی و اولتراسونیک (BU)، زغال زیستی با پوشش آهن(III) (BF)، زغال زیستی با پوشش آهن(III) و اولتراسونیک (BFU)، زغال زیستی با پوشش روی (BZ) و زغال زیستی با پوشش روی و اولتراسونیک (BZU) و تعداد تکرار 3 عدد بود. نتایج نشان داد تیمارهای BF و BFU بهترتیب با مقادیر جذب 34/3 و 66/3 میلیگرم بر گرم دارای ماکزیمم ظرفیت جذب بود. همدمای فروندلیچ، با توجه به مقادیر ضرایب تعیین بالاتر و RMSE کمتر برازش بهتری را برای دادههای جذب نشان داد. در بررسی همدمای فروندلیچ، مقادیر n (درجهی همگنی سطوح جذبکننده)، برای تیمارهای BF و BFU (با مقادیر بین 2 تا 10) نشاندهندهی همدما از نوع مطلوب بود. مقادیر بالای ظرفیت جذب (KF) بهدست آمده برای BF و BFU که بهترتیب 414/1909 و 22/1484 ((mg g-1)(L mg-1)1/n) است، نشاندهندهی ظرفیت جذب بالای این جاذبها برای نیترات است. مقایسهی مقادیر بهدست آمده برای درصد حذف نیترات از محلول، ضریب تعیین همدماها و نیترات جذبشده در واحد وزن مادهی جذبکننده (qe)، نشان داد اولتراسونیک اثرات مثبتی بر فرآیند جذب نیترات توسط بیوچار دارد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Investigation of Nitrate Adsorption Isotherms by Iron (III) and Zinc-coated Biochars Using Ultrasonic
نویسندگان [English]
- M.R. Alashti 1
- M. Khoshravesh 1
- F. Sadegh-Zadeh 2
- H.M. Azamathulla 3
1 Water Engineering Department, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Department of Soil Science, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 Department of Civil and Environmental Engineering, Faculty of Engineering, The University of the West Indies, St. Augustine Campus, St Augustine, Trinidad and Tobago
چکیده [English]
Introduction
The rapid growth and development of urban communities, coupled with the increased industrial and economic activities in recent years, have led to the production and release of various pollutants into the environment. These pollutants have adverse effects on human health, living organisms, and the overall environment. With limitations in water resources, insufficient rainfall, the looming risk of water crises in many countries, and the escalating pollution of surface and underground water, there is a pressing need for environmental solutions to mitigate these issues. It is important to acknowledge that wastewater often contains pollutants that may render it unsuitable for certain applications. The utilization of biochar derived from cost-effective materials and innovative technologies such as ultrasonics is one avenue that warrants exploration for enhancing water quality. In this approach, a nitrate solution is exposed to both an adsorbent and ultrasonic waves. This dual treatment induces changes in the physical and chemical properties of water, thereby offering potential improvements in water quality.
Materials and Methods
This study aimed to explore the impact of utilizing biochar derived from rice straw, which was coated with iron(III) and zinc cations, and subjected to ultrasonication, on the nitrate adsorption process from aqueous solutions. In order to produce biochar, cheap materials of rice straw were used. The chopped straw was placed in the electric furnace and heated for one hour to reach the desired temperature. Then it was kept at that temperature for 2 hours. After that, the obtained biochar was washed three times with distilled water at a ratio of 1:20 and dried in an oven at 70°C for 24 hours. In this study, two temperature levels, 350 °C and 650 °C, were used for biochar production. Based on the results from pre-tests, it was found that biochars produced at 650 °C exhibited higher nitrate removal efficiency. These biochars were then used for the continuation of the experiments. To optimize the adsorbent dose, pre-tests were conducted using doses of 0.1, 0.3, 0.5, 0.8, and 1 gram of the adsorbent with 40 ml of nitrate solution. The concentrations of nitrate solution tested were 20, 45, 80, 100, 150, and 200 mg L-1. The research involved conducting experiments to determine the optimal parameters for each treatment, with three repetitions conducted in the water quality laboratory of Sari agricultural sciences and Natural Resources University during the years 2021 and 2022. The treatments comprised biochar (B), biochar and ultrasonic (BU), biochar with iron(III) coating (BF), biochar with iron(III) coating and ultrasonic (BFU), biochar with zinc coating (BZ), and biochar with zinc coating and ultrasonic (BZU). In this investigation, Langmuir and Freundlich adsorption isotherms were examined.
Results and Discussion
The results indicated that the BF and BFU treatments exhibited a higher maximum adsorption capacity. The Freundlich isotherm demonstrated higher correlation coefficients for BF, BFU, BZ, and B, suggesting a superior fit of the Freundlich model in these treatments. The better fit of the Freundlich adsorption isotherm indicates the heterogeneity of biochar surface adsorption sites, which means that the adsorption process is not confined to a single constituent layer. Nitrate adsorption on biochar surface is probably influenced by electrostatic adsorption and ion exchange. Conversely, the BZU and BU treatments showed a better fit with the Langmuir model. In the analysis of the Freundlich isotherm, nf values revealed that BF, BFU, and BZ treatments exhibited a favorable adsorption state with a desirable curve shape. The B treatment displayed a normal adsorption state with a linear curve shape, while BU and BZU treatments showed a weak adsorption state with an unfavorable curve shape. The elevated values of adsorption capacity (KF) obtained for BF, BFU, and BZ, namely 1909.414, 1484.22, and 386.63 ((mg g-1)(L mg-1)1/n), respectively, underscore the high nitrate adsorption capacity of these treatments. Also, biochars coated with iron(III) and with iron solution concentration of 10000 mg L-1 had a very good performance in removing nitrate from aqueous solutions. The new ultrasonic technology was able to improve the performance of the tested adsorbents in a period of 5 minutes without the need to stir the mixture of biochar and nitrate solution in the obtained equilibrium times, which were between 60 and 120 minutes. Application of this technology can be effective and useful in increasing the economic benefits of using limited water resources and increasing the efficiency of water consumption.
Conclusion
The utilization of cost-effective biochars derived from rice straw, along with the application of ultrasonic technology, can substantially decrease nitrate levels in aqueous solutions. In the case of biochar with iron(III) coating, biochar with iron(III) coating combined with ultrasonic treatment, and biochar combined with ultrasonic treatment, there is a notable affinity for nitrate to be adsorbed onto the surface of the adsorbent.
کلیدواژهها [English]
- Adsorbent
- Adsorption capacity
- Freundlich
- Linear isotherm
2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Abd-Elaty, I., Kuriqi, A., & Shahawy, A.E. (2022). Environmental rethinking of wastewater drains to manage environmental pollution and alleviate water scarcity. Natural Hazards, 110(3), 2353-2380. https://doi.org/10.1007/ s11069-021-05040-w
- Alashti, M.R., Khoshravesh, M., Sadeghzadeh, F., & Azamathulla, H.M. (2024). Evaluation of the effect of ultrasonic waves in the removal of nitrate from aqueous solution by activated carbon coated with zinc and iron. PhD thesis at Sari University of Agricultural Sciences and Natural Resources, Page 6. (In Persian with English abstract)
- Almasi, H., Asgari, G., Leili, M., Sharifi, Z., & Seid-Mohammadi, A. (2017). The study of phenol removal from aqueous solutions using oxidizing agents of peroxide hydrogen, persulfate and periodate activated by ultrasound. Scientific journal of Rafsanjan University of Medical Sciences, 15(9), 835-848. (In Persian with English abstract)
- Amininejad, M., Maroosi, A., Broomandnasab, S., Moazed, H., & Farasat, M. (2019). Evaluation of nitrate removal from aqueous solution by nanostructure of Conocarpus. Irrigation and Water Engineering, 10(1), 166-179. (In Persian with English abstract). https://doi.org/22125/IWE.2019.95882
- APHA. (2012). Standard Methods for the Examination of Water and Wastewater. 22nd Edition, American Public Health Association, Washington DC.
- Asgari, G., Seid Mohammadi, A., Chavoshani, A., & Rahmani, A.R. (2013). Microwave/ H2O2 efficiency in pentachlorophenol removal from aqueous solutions. Journal of Research in Health Sciences, 14(1), 36–39.
- Bhatnagar, A., Ji, M., Choi, Y.H., Jung, W., Lee, S.H., Kim, S.J., Lee, G., Suk, H., & Kim, H.S. (2008). Removal of nitrate from Water by adsorption onto zinc chloride treated activated carbon. Separation Science and Technology, 43, 886-907. https://doi.org/10.1080/01496390701787461
- Brunauer, S., Emmett, P., & Teller, E. (1938). Journal of the American Chemical Society, 60(2), 309-319. https://doi.org/10.1021/ja01269a023
- Caravelli, A.H., De. Gregorio, C., & Zaritzky, N.E. (2012). Effect of operating conditions on the chemical phosphorus removal using ferric chloride by evaluating orthophosphate precipitation and sedimentation of formed precipitates in batch and continuous systems. Chemical Engineering Journal, 209, 469–477. https://doi.org/1016/j.cej.2012.08.039
- Cataldo, D.A., Maroon, M., Schrader, L.E., & Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissues by nitration of salicylic acid. Commun. Soil Science and Plant Analysis, 6(1), 71-80. https://doi.org/ 10.1080/00103627509366547
- Chowdhury, P., & Viraraghavan, T. (2009). Sonochimical degradation chlorinated organic compounds, phenolic compounds and organic dyes-a review. Science of the Total Environment, 407(8), 2474–2492. https://doi.org/ 10.1016/j.scitotenv.2008.12.031
- Crini, G.G., & Badot, P.M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33, 399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
- Darvish, M., Taghavi, L., Moradi Dehaghi, S., & Karbassi, A.R. (2021). Fixed–bed column studies of nitrate ion adsorption using modified montmorillonite adsorbent. Applied Research in Chemical – Polymer Engineering, 4(4), 89-105. (In Persian with English abstract)
- Dehgan, T., Gholami Sefidkouhi, M.A., Khoshravesh, M., & Samadani Langroudi, N. (2021). Use of modified nano particles of beech leaves for nitrate removal from aqueous solutions in the column system. Journal of Water and Soil Science, 25(1), 205-217. (In Persian with English abstract). https://doi.org/10.47176/jwss.25.1.12491
- Farasat, M., & Saiadi, M. (2023). Removal of nitrate, ammonium and phosphate from water using activated carbon. Journal of New Approaches in Water Engineering and Environment, 1(2), 127-137. (In Persian with English abstract). https://doi.org/10.22034/nawee.2023.384829.1035
- Farrokhpey, F., Mofarah, E., & Nik Khasal, R. (2019). Introduction with surface analyses based on physical adsorption-desorption. Iranian Journal of Laboratory Knowledge, 4(6), 7-12.
- Ghorbani, M., Broomandnasab, S., & Houshmand, A. (2022). Nitrate absorption from aqueous solution using sugarcane bagasse biochar, broken ceramic and Cocopit. Wetland Ecobiology Scientific Journal, 14(51), 35-48. (In Persian with English abstract)
- Jaafarzadeh, N., Ahmadi, M., Amiri, H., Yassin, M.H., & Martinez, S.S. (2012). Predicting Fenton modification of solid waste vegetable oil industry for arsenic removal using artificial neural networks. Journal of the Taiwan Institute of Chemical Engineers, 43, 873–878. https://doi.org/10.1016/j.jtice.2012.05.008
- Karimi, M., Entezari, M.H., & Chamsaz, M. (2010). Sorption studies of nitrate ion by a modified beet residue in the presence and absence of ultrasound. Ultrasonics Sonochemistry, 17(4), 711-717. https://doi.org/10.1016/j.ultsonch. 2009.12.002
- Kilpimaa, S., Runtti, H., Kangas, T., Lassi, U., & Kuokkanen, T. (2015). Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution. Journal of Industrial and Engineering Chemistry, 21, 1354-1364.
- Miler, M.P., Duvall, M., & Sohi, S. (2011). Localisation of nitrate in the rhizosphere of biochar-amended soils. Journal of Soil Biology and Biochemistry, 43, 2243-2246. https://doi.org/10.1016/j.soilbio.2011.07.019
- Mook, W.T., Chakrabarti, M.H., Aroua, M.K., Khan, G.M.A., Ali, B.S., Islam, M.S., & Abu Hassan, M.A. (2012). Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination, 285, 1-13.
- Rashwan, S.S., Dincer, I., Mohany, A., & Pollet, B.G. (2019). The Sono-Hydro-Gen process (Ultrasound induced hydrogen production): Challenges and opportunities. International Journal of Hydrogen Energy, 44(29), 14500-14526. https://doi.org/10.1016/j.ijhydene.2019.04.115
- Reusch, T.B.H., Dierking, J., Andersson, H.C., Bonsdorff, E., Carstensen, J., Casini, M. (2018). The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 4, 8195. https://doi.org/10.1126/sciadv.aar8195
- Sainan, D., & Sartaj, M. (2016). Statistical analysis and optimization of ammonia removal from landfill leachate by sequential microwave/aeration process using factorial design and response surface methodology. Journal of Environmental Chemical Engineering, 4(1), 100-108. https://doi.org/10.1016/j.jece.2015.10.029
- Samsuri, W.A., Sadegh– Zadeh, F., & She–Bardden, J.B. (2013). Adsorption of as(III) and as (V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering, 1, 981-988. https://doi.org/10.1016/j.jece.2013.08.009
- Serediak, N.A., Prepas, E.E., & Putz, G.J. (2014). Treatise on Geochemistry (Second Edition), 11, 305-323. https://doi.org/10.1016/B978-0-08-095975-7.00908-6
- Shakeri, N., Ghorbani, H., & Ghaffarian Moqarrab, M.E. (2017). Investigating the effect of acidity and humic acid on the removal efficiency of nitrate from water by zero iron nanoparticles. Bi-Monthly Scientific-Research Journal of Water and Sewage, 28(3), 63-55.
- Shirsath, S.R., Sonawane, S.H., & Gogate, P.R. (2012). Intensification of extraction of natural products using ultrasonic irradiations—a review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10-23. https://doi.org/10.1016/j.cep.2012.01.003
- Smith, J.M. (1981). Chemical Engineering Kinetics. Mc Graw- Hill Chemical Engineering Series, 3rd edition. New York.
- Tang, Y., Alam, M.S., Konhauser, K.O., Alessi, D.S., Xu, S., Tian, W., & Liu, Y. (2019). Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. Journal of Cleaner Production, 209, 927-936. https://doi.org/10.1016/j.jclepro.2018.10.268
- Thorneby, L., & Persson, K. (1999). Treatment of liquid effluents from dairy cattle and pigs using reverse osmosis. Journal of Agricultural Engineering Research, 74, 159–170.
- Wang, Y., Gao, B., Yue, W.W., & Yue, Q.Y. (2007). Adsorption kinetics of nitrate from aqueous solutions onto modified wheat residue. Physicochemical and Engineering Aspects, 308, 1-5. https://doi.org/10.1016/j.colsurfa. 2007.05.014
- Westlund, H. (2014). Social Capital and Governance for Efficient Water Management: Chapter 5. In K. Kobayashi, I. Syabri, I.R.D. Ari, & H. Jeong (Eds). Community Based Water Management and Social Capital. London: IWA Publishing, 59-68.
- Yazdani Sheldarreh, M., Gholami Sefidkohi, M.A., & Ziatabar Ahmadi, M. (2018). Purification of nitrate-contaminated water using micro and nano absorbent structures made of rice and wheat. Irrigation and drainage master's thesis. Agricultural Engineering Faculty, Sari University of Agricultural Sciences and Natural Resources. (In Persian with English abstract)
- Zameni, L., Sadeghzadeh, F., & Jalili, B. (2016). Nitrate leaching in soil amended with biochar and biochar with iron coating. Master's thesis in soil science, majoring in soil chemistry and fertility. Faculty of Agricultural Sciences, Sari University of Agricultural Sciences and Natural Resources. (In Persian with English abstract)
ارسال نظر در مورد این مقاله