دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه جغرافیا، دانشگاه ارومیه، ارومیه، ایران

10.22067/jsw.2024.86169.1366

چکیده

بررسی تغییرات وقایع حدی ناشی از گرمایش جهانی و تغییر اقلیم و ارزیابی اثرات آنها بر بخش‌های مختلف جامعه بسیار مهم است. هدف از این تحقیق بررسی تغییرات شاخص‌های حدی دما در شمال‌غرب ایران و ارتباط آنها با گردش کلی جو می­باشد. بدین منظور ابتدا با استفاده از داده­های دمای روزانه 20 ایستگاه سینوپتیک شمال غرب ایران در دوره 25 ساله (2010-1986) شاخص­های حدی دما محاسبه شد و سپس نقشه­های توزیع مکانی این شاخص­ها ترسیم گردید. برای بررسی تغییرات گردش کلی جو و تأثیر آن بر وقایع حدی نیز، داده­های گردش جو برای دوره آماری 1985-1961 به‌عنوان نماینده اقلیم پیشین و دوره آماری 2016-1986 به‌عنوان دوره تظاهر تغییر اقلیم بر اساس داده­های باز تحلیل NCEP/NCAR دریافت گردید. سپس نقشه­های تفاضل با استفاده از پارامترهای ارتفاع ژئوپتانسیل و چرخندگی نسبی تراز 500 هکتوپاسکال، امگای سطح زمین، ضخامت جو و دمای هوای سطح زمین ترسیم گردید. نتایج بررسی تغییرات شاخص­های حدی نشان داد در اکثر ایستگاه­های شمال­غرب ایران شاخص‌های حدی سرد رو به کاهش است، درحالی‌که شاخص‌های حدی گرم افزایش یافته است. بررسی تأثیر گردش کلی جو بر تغییرات شاخص‌های حدی نیز نشان داد که تقویت گردش آنتی‌سیکلونی و افزایش ارتفاع ژئوپتانسیل از طریق افزایش پایداری جو، تغییرات اقلیمی در شمال غرب ایران را تشدید نموده است. بررسی نقشه‌های تفاضل دمای فصلی نیز حاکی از این است که کل منطقه در فصول گرم و سرد سال با افزایش دما و تنها شمال استان آذربایجان غربی اندکی کاهش دمای دوره سرد سال را منعکس می‌سازد که معنادار نمی‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Trend Analysis of Temperature Changes in Northwest of Iran Using Extreme Indices and Its Relation to Atmospheric Circulation

نویسندگان [English]

  • Kh. Javan
  • A. Movaghari

Department of Geography, Urmia University, Urmia, Iran

چکیده [English]

Introduction
The most important effect of global warming is the increase in extreme weather events. According to AR5 reports, between 1951 and 2010, the number of warm days and nights increased and the number of cold days and nights has declined globally. In addition, the duration and frequency of hot periods, including thermal waves, have increased since the middle of the twentieth century. The trend analysis of temperature extreme indices is important in estimating the trend of global warming. Temperature Changes are affected by many complex factors. A significant part of these changes is due to the elements of the general circulation of the atmosphere and the sea surface temperature. Given that extreme weather events are one of the most devastating natural hazards and have harmful effects on different parts of society, therefore, many researchers have studied the changes in the past and future of extreme events and the mechanisms that trigger these changes. This research attempts to study the trend of changes in extreme temperature indices in North-West of Iran, and also their relation with general circulation of atmosphere.
 
Materials and Methods
At first, diurnal data of minimum and maximum temperature of 20 synoptic stations of the Northwest of Iran, which have long-term and reliable statistics, extracted for the period of 1986-2010 and quality control and data homogeneity of them were investigated. afterwards, 16 Extreme temperature indices introduced by ETCCDMI were applied. In general, these indices are categorized into five categories of absolute indices, based on percentiles, based on thresholds, periodic, and amplitudes that measure the frequency, severity and duration of the temperature. These indices are estimated by RClimDex software and the trend rate of the changes in indices was shown through maps. To measure the changes in the general circulation of atmosphere the annual mean circulation composites extracted for the periods of 1961-1985 and 1986 -2016 based on the reanalysis data of the NCEP / NCAR. Then the difference maps plotted using grads software.
 
Results
The regional trend of extreme indices and the percentage of stations with a positive and negative trend were identified and the spatial distribution of the gradient of each of the indices was mapped. The results show that all absolute temperature indices have an increasing trend. On average, the maximum temperature (TXx and TXn) has increased by about 0.04 degrees over the decade. The increase rate of TNx is about 0.03 degrees, while the TNn increased by about 0.1 degrees Celsius per decade during the study period. Therefore, in the north-west of Iran, temperature increase has mainly occurred at night. The values of cold days (TX10) and cold nights (TN10) decreased with a gradient of -0.46 and -0.42 days in the decade. The warm days (TX90) and warm nights (TN90) have an increasing trend in 95% of the stations in the area. Frost days (FD) and icing days (IDs) have a decreasing trend, whereas, summer days (SU25) and tropical nights (TR20) have an increasing trend. The number of frost days with a gradient of -0.95 and the number of icing days with a gradient of -0.63 days in decade are decreasing. While, the number of summer days with a gradient of 0.81 and the number of tropical nights with gradient of 0.31 days in decade are increasing. In the northwest of Iran, all stations have been experiencing the increasing trend in Warm Spell Duration Index (WSDI), but the Cold Spell Duration Index (CSDI) in 70% of the stations in the region has decreased. Growing season length, as an effective index especially in agriculture, is increasing by an average of 1.1 days per decade. Based on the results of research carried out globally and at Iran, the trend of Daily Temperature Range (DTR) is negative, while this index has a positive and increasing trend in 65% of North-West stations in Iran. Except TNx and TNn indices that have positive trend in most stations in the region, Comparison of warm and cold extreme indices indicates that warm indices have a positive and incremental trend, while cold indicators show a decreasing trend. The positive gradient of these indices also corresponds to the decreasing trend of cold day and night indices, which indicates an increase in temperature and a decrease in cold days and nights. The study of large-scale changes in atmospheric circulation shows that the study area has got warmer in the spring and summer and colder in autumn and winter.
 
Conclusion
In this study, the trend of temperature extreme indices in North-West of Iran and its relation with the large-scale general circulation of the atmosphere have been investigated. The results show that all absolute temperature indices (TXx, TXn, TNx and TNn) are incremental. The indices of cold days (TX10) and nights (TN10) decreased with a gradient of -0.46 and -0.42 days in the decade and the indices of warm days (TX90) and warm nights (TN90) are increasing in 95% of the stations in the area. Frost days and icing days (IDs) show declining trend and summer days (SU25) and tropical nights (TR20) have an increasing trend. In the north-west of Iran, all stations have experienced an increasing trend in warm spell duration index (WSDI), but the cold spell duration index (CSDI) has been decreasing in 70% of the stations in the area. Growing season length (GSL) is increasing by an average of 1.1 days in every decade. Daily temperature range (DTR) has a positive and increasing trend in 65% of stations in north-west Iran. Comparison of warm and cold extreme indices indicates that warming indices have a positive and incremental trend, while cold indices show a decreasing trend. Study of the general circulation of atmosphere of the region by drawing and analyzing difference maps indicates that the study area has been warmer in spring and summer and colder in autumn and winter.

کلیدواژه‌ها [English]

  • Atmosphere circulation
  • Climate change
  • Northwest of Iran
  • Temperature indices

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Aguilar, E., Aziz Barry, A., Brunet, M., Ekang, L., Fernandes, A., Massoukina, M., & Thamba Umba, O. (2009). Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. Journal of Geophysical Research: Atmospheres, 114(D2). https://doi.org/10.1029/ 2008JD011010
  2. Ahmadi, M., Dadashi, A., & Ebrahimi, R. (2017). Prospects of Iran's warm climates based on the regional mesoscale model output REGCM4. Geography, 15(52), 67-81. (In Persian)
  3. Ahmadi, M., Lashkari, H., Keykhosravi, G., & Azadi, M. (2015). Analysis of extreme temperature indicators in the detection of climate change in Greater Khorasan. Geography, 13(45), 53-75. (In Persian(
  4. Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., & Tagipour, A. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5). https://doi.org/10.1029/2005JD006290
  5. Alijani, B. (2011). Spatial analysis of daily temperatures and precipitation extremes in Iran. Applied Research in Geographical Sciences, 20, 9-30. (In Persian)
  6. Alijani, B., & Farajzadeh, H. (2015). Trend analysis of extreme temperature indices in the North West of Iran, Geography and Planning, 19(52), 229-256. (In Persian)
  7. Alijani, B., Roshani, A., Parak, F., & Heidari, R. (2012). Trends in extreme daily temperature using climate change indices in Iran, Geography and Environmental Hazards, 1(2), 17-28. (In Persian)
  8. Azizzadeh, M.R., & Javan, Kh. (2018). Trends of extreme temperature over the Lake Urmia basin, Iran, during 1987–2014. Journal of the Earth and Space Physics, 43(4), 55-72. https://doi.org/10.22059/jesphys.2017. 233762.1006898
  9. Balling, R.C., Kiany, M.S.K., & Roy, S.S. (2016). Anthropogenic signals in Iranian extreme temperature indices. Atmospheric Research, 169, 96-101. https://doi.org/10.1016/j.atmosres.2015.09.030
  10. Cao, Q., Yu, D., Georgescu, M., Han, Z., & Wu, J. (2015). Impacts of land use and land cover change on regional climate: a case study in the agro-pastoral transitional zone of China. Environmental Research Letters, 10(12), 124025. https://doi.org/10.1088/1748-9326/10/12/124025
  11. Darand, M. (2015). Assessment and detection of climate change in Iran during recent decades. Iranian Journal of Watershed Management Science and Engineering, 9(30), 1-14. (In Persian)
  12. Dashkhuu, D., Kim, J.P., Chun, J.A., & Lee, W.S. (2015). Long-term trends in daily temperature extremes over Mongolia. Weather and Climate Extremes, 8, 26-33. https://doi.org/10.1016/j.wace.2014.11.003
  13. Dong, S., Yan, X., & Xiong, Z. (2013). Varying responses in mean surface air temperature from land use/cover change in different seasons over northern China. Acta Ecologica Sinica, 33(3), 167-171. https://doi.org/10.1016/ j.chnaes.2013.03.007
  14. Fathian, F., Ghadami, M., Haghighi, P., Amini, M., Naderi, S., & Ghaedi, Z. (2020). Assessment of changes in climate extremes of temperature and precipitation over Iran.‏Theoretical and Applied Climatology, 141, 1119–1133. https://doi.org/10.1007/s00704-020-03269-2
  15. Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A.M., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Science of the Total Environment, 442, 405-419. https://doi.org/10.1016/j.scitotenv.2012.10.029
  16. Guan, Y., Zhang, X., Zheng, F., & Wang, B. (2015). Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River Basin, China. Global and Planetary Change, 124, 79-94. https://doi.org/ 10.1016/j.gloplacha.2014.11.008
  17. Hamed, K.H., & Rao, A.R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X
  18. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
  19. Iqbal, M.A., Penas, A., Cano-Ortiz, A., Kersebaum, K.C., Herrero, L., & Del Río, S. (2016). Analysis of recent changes in maximum and minimum temperatures in Pakistan. Atmospheric Research, 168, 234-249. https://doi.org/10.1016/j.atmosres.2015.09.016
  20. Jiang, C., Mu, X., Wang, F., & Zhao, G. (2016). Analysis of extreme temperature events in the Qinling Mountains and surrounding area during 1960–2012. Quaternary International, 392, 155-167. https://doi.org/ 10.1016/j.quaint.2015.04.018
  21. Keggenhoff, I., Elizbarashvili, M., Amiri-Farahani, A., & King, L. (2014). Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather and Climate Extremes, 4, 75-85. https://doi.org/ 10.1016/j.wace.2014.05.001
  22. Klein Tank, A.M.G., Peterson, T.C., Quadir, D.A., Dorji, S., Zou, X., Tang, H., & Sikder, A.B. (2006). Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research: Atmospheres, 111(D16). https://doi.org/10.1029/2005JD006316
  23. Kouzegaran, S., & Mousavi Baygi, M. (2015). Investigation of meteorological extreme events in the north-east of Iran. Journal of Water and Soil, 29(3), 750-764. (In Persian)
  24. Marengo, J.A., Jones, R., Alves, L.M., & Valverde, M.C. (2009). Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, 29(15), 2241-2255. https://doi.org/10.1002/joc.1863
  25. Marofi, S., Sohrabi, M.M., Mohammadi, K., Sabziparvar, A.A., & Abyaneh, H.Z. (2011). Investigation of meteorological extreme events over coastal regions of Iran. Theoretical and applied climatology, 103(3-4), 401-412. https://doi.org/10.1007/s00704-010-0298-3
  26. Muhire, I., & Ahmed, F. (2016). Spatiotemporal trends in mean temperatures and aridity index over Rwanda. Theoretical and Applied Climatology, 123(1-2), 399-414. https://doi.org/10.1007/s00704-014-1353-2
  27. Nassaji Zavareh, M., & Ghermezcheshmeh, B. (2023). Assessment of spatial and temporal variability of extreme temperature by ETCCDI indices (North and West of Iran). Journal of Environment and Water Engineering, 9(1), 95-108. (In Persian)
  28. Peng, X., She, Q., Long, L., Liu, M., Xu, Q., Zhang, J., & Xiang, W. (2017). Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China. Atmospheric Research, 195, 20-30. https://doi.org/10.1016/j.atmosres.2017.05.013
  29. Pourasghar,, Eslahi, M., & Akbarzadeh, U. (2022). Studying of the extreme temperature events in East Azerbaijan for 2009-2049. Journal of Climate Research, 12(48), 143-156. (In Persian)
  30. Rahimzadeh, F., Asgari, A., & Fattahi, E. (2009). Variability of extreme temperature and precipitation in Iran during recent decades. International Journal of Climatology, 29(3), 329-343. https://doi.org/10.1002/joc.1739
  31. Rahimzadeh, F., Hedayati Dezfouli, A., & Pourasgharian, A. (2011). Assessment of the process and extremes indices of temperature and precipitation in Hormozgan Province, Geography and Development, 9(21), 97-116. (In Persian)
  32. Ruml, M., Gregorić, E., Vujadinović, M., Radovanović, S., Matović, G., Vuković, A., & Stojičić, D. (2017). Observed changes of temperature extremes in Serbia over the period 1961− 2010. Atmospheric Research, 183, 26-41. https://doi.org/10.1016/j.atmosres.2016.08.013
  33. Sohrabi, M.M., Ryu, J.H., & Alijani, B. (2013). Spatial and temporal analysis of climatic extremes in the mountainous regions of Iran. International Journal of Climate Change: Impacts & Responses, 4(4). https://doi.org/10.18848/1835-7156/CGP/v04i04/37183
  34. Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M.M., Molanejad, M., & Zawar-Reza, P. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology, 126(3-4), 775-795. https://doi.org/10.1007/s00704-015-1609-5
  35. Stone, B., Hess, J.J., & Frumkin, H. (2010). Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environmental Health Perspectives, 118(10), 1425. https://doi.org/10.1289/ehp.0901879
  36. Sun, W., Mu, X., Song, X., Wu, D., Cheng, A., & Qiu, B. (2016). Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmospheric Research, 168, 33-48. https://doi.org/10.1016/j.atmosres.2015.09.001
  37. Tabari, H., & Talaee, P.H. (2011). Temporal variability of precipitation over Iran: 1966–2005. Journal of Hydrology, 396(3-4), 313-320.‏ https://doi.org/10.1016/j.jhydrol.2010.11.034
  38. Taghavi, F., & Mohamadi, H. (2007). Investigation of return period of extreme climate events to identify the environmental consequences. Journal of Environmental Studies. 33(43), 11-20. (In Persian)
  39. Tingley, M.P., & Huybers, P. (2013). Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature, 496(7444), 201-205. https://doi.org/10.1038/nature11969
  40. Tong, S., Li, X., Zhang, J., Bao, Y., Bao, Y., Na, L., & Si, A. (2019). Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960–2017. Science of the Total Environment, 649, 75-89. https://doi.org/10.1016/j.scitotenv.2018.08.262
  41. Vincent, L.A., Aguilar, E., Saindou, M., Hassane, A.F., Jumaux, G., Roy, D., & Amelie, V. (2011). Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. Journal of Geophysical Research: Atmospheres, 116(D10). https://doi.org/10.1029/2010JD015303
  42. Vincent, L.A., & Mekis, É. (2019). Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. In Data, Models and Analysis (pp. 61-77). Routledge.
  43. Walsh, J.E., Ballinger, T.J., Euskirchen, E.S., Hanna, E., Mård, J., Overland, J.E., & Vihma, T. (2020). Extreme weather and climate events in northern areas: A review. Earth-Science Reviews, 209, 103324. https://doi.org/10.1016/j.earscirev.2020.103324
  44. Wang, S., Zhang, M., Wang, B., Sun, M., & Li, X. (2013). Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quaternary International, 313, 110-117. https://doi.org/10.1016/j.quaint.2013.03.037
  45. World Meteorological Organization (WMO) (1986). "Report of the International Conference on the assessment of the role of carbon dioxide and of other greenhouse gases in climate variations and associated impacts". Villach, Austria. Archived from the originalon 21 November 2013. Retrieved 28 June 2009.
  46. World Meteorological Organization (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Climate Data and Monitoring, WCDMP-No. 72.‏
  47. Yan, G., Qi, F., Wei, L., Aigang, L., Yu, W., Jing, Y., & Qianqian, M. (2015). Changes of daily climate extremes in Loess Plateau during 1960–2013. Quaternary International, 371, 5-21. https://doi.org/10.1016/ j.quaint.2014.08.052
  48. Zhang, X.B., Aguilar, E., & Wallis, T. (2005). Trends in Middle East climate extreme indices from 1950 to 2003. Journal of Geophysical Research, 110. https://doi.org/10.1029/2005JD006181
  49. Zhang, Y., Gao, Z., Pan, Z., Li, D., & Huang, X. (2017). Spatiotemporal variability of extreme temperature frequency and amplitude in China. Atmospheric Research, 185, 131-141. https://doi.org/10.1016/j.atmosres. 2016.10.018
  50. Zhong, K., Zheng, F., Wu, H., Qin, C., & Xu, X. (2017). Dynamic changes in temperature extremes and their association with atmospheric circulation patterns in the Songhua River Basin, China. Atmospheric Research, 190, 77-88. https://doi.org/10.1016/j.atmosres.2017.02.012
  51. Zongxing, L., He, Y., Wang, P., Theakstone, W. H., An, W., Wang, X., & Cao, W. (2012). Changes of daily climate extremes in southwestern China during 1961–2008. Global and Planetary Change, 80, 255-272. https://doi.org/10.1016/j.gloplacha.2011.06.008

 

 

CAPTCHA Image