دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

10.22067/jsw.2024.88287.1411

چکیده

سلنیم جزو عناصر مفید برای گیاهان بوده که معمولا در محلول­های غذایی در کشت‌های هیدروپونیک مورد استفاده قرار نمی­گیرد. این پژوهش به‌منظور بررسی اثر سطوح مختلف سلنیم در محلول غذایی بر شاخص­های رشدی و تجمع نیترات در کاهوی فرانسوی قرمز رقم لولا رزا (Lactuca sativa L. cv. Lolla Rossa) انجام شد. این آزمایش به‌صورت طرح کاملاً تصادفی با هفت غلظت سلنیم در محلول غذایی (صفر، 1/0، 5/0، 1، 5، 10 و 20 میکرومول بر لیتر از منبع سلنات سدیم) در چهار تکرار به‌صورت کشت بدون خاک در گلخانه تحقیقاتی دانشگاه شهرکرد انجام شد. نتایج نشان داد کاربرد سطوح مختلف سلنیم تأثیر معناداری بر شاخص­های رشدی کاهو از قبیل طول برگ، عرض برگ و تعداد برگ در مقایسه با عدم کاربرد سلنیم نداشت. اگرچه کاربرد سلنیم با غلظت 10 میکرومول بر لیتر منجر به کاهش معنادار ارتفاع گیاه در مقایسه با عدم کاربرد سلنیم شد؛ اما قطر گیاه با کاربرد سلنیم افزایش یافت، به‌طوری­که بیشترین قطر بوته با کاربرد یک میکرومول بر لیتر سلنیم حاصل شد. کاربرد سلنیم با غلظت یک میکرومول بر لیتر منجر به افزایش معنادار شاخص سبزینگی کل برگ­های کاهو در مقایسه با عدم کاربرد سلنیم شد. بر مبنای نتایج حاصله کاربرد یک میکرومول بر لیتر سلنیم منجر به بیشترین وزن تازه شاخساره کاهو شد که در مقایسه با محلول غذایی فاقد سلنیم 22 درصد افزایش یافت. کاربرد سلنیم با غلظت­های 10 و 20 میکرومول بر لیتر به‌ترتیب منجر به تجمع 4/7 و 15 میلی­گرم سلنیم بر کیلوگرم ماده خشک در شاخساره کاهو شد که از لحاظ غنی­سازی این محصول با سلنیم دارای اهمیت زیادی است. نتایج نشان داد کاربرد سلنیم منجر به کاهش معنادار غلظت نیترات ریشه، برگ­های بیرونی، برگ­های درونی و کل برگ­های کاهو در مقایسه با عدم کاربرد سلنیم شد. کمترین غلظت نیترات در کل برگ­های کاهو در گیاهان تغذیه شده با 5/0 میکرومول بر لیتر سلنیم مشاهده شد که در مقایسه با عدم مصرف سلنیم به‌طور معنادارای کاهش یافت. بر اساس غلظت نیترات در کل برگ­های کاهو، کاربرد سلنیم با غلظت 5/0 میکرومول بر لیتر در محلول غذایی برای تولید کاهوی فرانسوی قرمز در کشت هیدروپونیک در شرایط این پژوهش توصیه می­شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effects of Different Levels of Selenium in the Nutrient Solution on the Growth and Nitrate Accumulation of Red French Lettuce in Soilless Culture

نویسندگان [English]

  • N. Lotfi
  • Sh. Kiani
  • H.R. Motaghian

Soil Science and Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

چکیده [English]

Introduction
Selenium (Se) is one of the beneficial elements for plants, which is usually not supplied in the nutrient solutions used in soilless cultures. It is an essential element for both humans and animals. Application of Se at low concentrations has a positive effect on the growth and quality indices of plants. Nitrate accumulation in leafy vegetables poses threaten to human health. Leafy vegetables such as lettuce (Lactuca sativa L.) contain high levels of nitrate. According to the results of some researches, application of Se in the nutrient solutions can decrease nitrate accumulation in vegetables. However, the optimum concentration of Se in the nutrient solution for lettuce production in hydroponic culture is still not clear. This experiment was conducted to elucidate the effect of different levels of Se in the nutrient solution on the growth indices, yield, and nitrate accumulation of red French lettuce (cv. Lolla Rossa) in soilless culture.
 
Materials and Methods
A perlite culture experiment, using completely randomized design, was carried out with seven levels of Se in the nutrient solution (0, 0.1, 0.5, 1, 5, 10 and 20 µmol L-1) with four replications in the research greenhouse of Shahrekord University. Lettuce seedlings were grown in 1.7 L plastic pots (one plant per pot) containing perlite with size of 0.5-5 mm and were manually fertigated with the nutrient solutions on a daily basis. Different concentrations of Se were applied as sodium selenate (Na2SeO4.2H2O) in the nutrient solution (Domingues et al., pH= 5.4±0.1, EC=1.36-1.41dS m–1). After four weeks, lettuce plants were harvested and the fresh weights of shoots and roots were measured. Plant growth indices consisting of leaf number, leaf length, leaf width, plant height, plant diameter, leaf chlorophyll index, and leaf total soluble solids were determined. In one bush in each treatment, the leaves were separated as 1st to 10th outer leaves and other inner leaves. The leaves were dried in an oven at 70 °C and were ground. Nitrate concentrations in outer and inner leaves were measured calorimetrically using a spectrophotometer at a wavelength of 410 nm. Shoots Se concentration was determined with ICP-MS after wet digestion of samples with HNO3 and H2O2. Analysis of variance was done using SAS software and means comparison was conducted using the least significant difference test at 0.05 probability level.
 
Results and Discussion
The results indicated that application of Se in the nutrient solution had not significant effect on the lettuce growth indices including of leaf length, leaf width and leaf number. Application of 10 µmol L-1 of Se in the nutrient solution led to significant decrease of plant height in comparison with control, but plant diameter increased with application of Se in the nutrient solution. The highest plant diameter was observed in 10 μmol L–1 of Se treatment. The highest and the lowest shoot fresh weight were obtained under 0 and 1 μmol L–1 of Se in the nutrient solution, respectively. Application of 1 μmol L–1 Se increased shoots fresh weight by 22% comparing to the control. Shoot Se concentration was increased with application of Se in the nutrient solution. The highest concentration of Se in shoots (15 mg kg-1 dry matter) was observed at the rate of 20 μmol L–1 of Se in the nutrient solution. The amount of Se accumulated in the plant tissue is important in biofortification programs. The results showed that application of Se in the nutrient solution (with the exception of 1 µmol L-1 of Se) led to significant decrease in the nitrate concentration of roots, outer leaves, inner leaves and all leaves of lettuce. The lowest nitrate concentration in all leaves of lettuce (2095 mg kg-1 fresh weight) was obtained in plants nourished with 0.5 μmol L–1 of Se in the nutrient solution. Compared with control (0 μmol L–1 of Se), nitrate concentration in all leaves for 0.5 μmol L–1 of Se treatment was decreased 28%. Selenium has a positive function on decreasing nitrate accumulation in plants via regulating the transport of nitrate and enhancing activities of nitrogen metabolism enzymes.
 
Conclusion
According to our results, application of Se decreased nitrate concentration in lettuce plants. Therefore, application of Se in the nutrient solution at the rate of 0.5 μmol L–1 is suggested for red French lettuce production in hydroponic culture under the conditions of the present study.

کلیدواژه‌ها [English]

  • Beneficial elements
  • Hydroponic
  • Leafy vegetables
  • Methemoglobinemia

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Amerian, M., Dashti, F., & Delshad, M. (2018). Effects of different levels of selenium and nitrogen on some growth and biochemical characteristics of onion (Allium cepa) plant. Journal of Plant Production Research25(1), 119-135. (In Persian with English abstract). https://doi.org/10.22069/jopp.2018. 12032.2101
  2. Aslam, M., Harbit, K.B., & Huffaker, R. (1990). Comparative effects of selenium and selenate on nitrate assimilation in barley seedlings. Plant, Cell and Environment, 13(8), 773-782. https://doi.org/10.1111/j.1365-3040.1990.tb01093.x
  3. Bazl, S., Dashti, F., & Delshad, M. (2017). Effects of different levels of sulfur and selenium on some morphological and antioxidant properties of onion (Allium cepa) cv. Germez Azarshahr. Iranian Journal of Horticultural Science48(3), 623-633. (In Persian with English abstract). https://doi.org/10.22059/ijhs.2017.218315.1108
  4. Bian, Z., Bo, L., Cheng, R., Yu, W., Tao, L., & Yang, Q. (2020). Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa): Effects of selenium forms and light spectra. Journal of Integrative Agriculture, 19(1), 133-144. https://doi.org/10.1016/S2095-3119(19)62775-9
  5. Cataldo, D., Maroon, M., Schrader, L.E., & Youngs, V.L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71-80. https://doi.org/10.1080/00103627509366547
  6. Chen, T.F., Zheng, W.J., Wong, Y.S., & Yang, F. (2008). Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. Journal of Integrative Plant Biology, 50(1), 40-48. https://doi.org/10.1111/j.1744-7909.2007.00600.x
  7. Domingues, D.S., Takahashi, H.W., Camara, C.A.P., & Nixdorf, S.L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84(1), 53-61. https://doi.org/10.1016/j.compag.2012.02.006
  8. Dordas, C.A., & Sioulas, C. (2008). Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Industrial Crops and Products, 27(1), 75-85. https://doi.org/10.1016/j.indcrop.2007.07.020
  9. Hajiboland, R., & Keivanfar, N., (2012). Selenium supplementation stimulates vegetative and reproductive growth in canola (Brassica napus) plants. Acta Agriculturae Slovenica, 99(1), 13-19. https://doi.org/10.14720/aas.2012. 99.1.14515
  10. Hawrylak-Nowak, B. (2008a). Effect of selenium on selected macronutrients in maize plants. Journal of Elementology, 13(4), 513-519.
  11. Hawrylak-Noawk, B. (2008b). Enhanced selenium content in sweet basil (Ocimum basilicum) by foliar fertilization. Vegetable Crops Research Bulletin, 69(1), 63-72. https://doi.org/10.2478/v10032-008-0021-4
  12. Hawrylak-Nowak, B. (2013). Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regulation, 70(1), 149-157. https://doi.org/10.1007/ s10725-013-9788-5
  13. Hawrylak, B., Matraszek, R., & Szymanska, M. (2007). Response of lettuce (Lactuca sativa) to selenium in nutrient solution contaminated with nickel. Vegetable Crops Research Bulletin, 67(1), 63-70. https://doi.org/ 10.2478/v10032-007-0031-7
  14. Jalali, M., & Salehi Chegeni, N. (2020). The positive effect of selenium on nitrate accumulation in spinach (Spinacia oleracea) and lettuce (Lactuca sativa L.). Journal of Horticultural Science34(2), 321-334. (In Persian with English abstract). https://doi.org/10.22067/jhorts4.v34i2.85540
  15. Kapolna, E., & Fodor, P. (2006). Speciation analysis of selenium enriched green onions(Allium fistulosum). Microchemical Journal, 84(1-2), 56-62. https://doi.org/10.1016/j.microc.2006.04.014
  16. Khademi Astaneh, R., Tabatabaie, S.J., & Bolandnazar, S.A. (2015). The effect of different concentrations of Se on yield and physiological characteristics of brussels sprouts (Brassica oleracea Gemmifera). Journal of Horticultural Science28(4), 535-543. (In Persian with English abstract). https://doi.org/10.22067/jhorts4. v0i0.22780
  17. Lee, M.J., Lee, G.P., & Park, K.W. (2001). Effects of selenium on growth and quality in hydroponically-grown Korean mint (Agastache rugosa). Horticulture, Environment and Biotechnology, 42(5), 483-486.
  18. Lei, B., Bian, Z.H., Yang, Q.C., Wang, J., Cheng, R.F., Li, K., Liu, W.K., Zhang, Y., Fang, H., & Tong, Y.X. (2018). The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce (Lactuca sativa). Journal of Integrative Agriculture, 17(4), 837-846. https://doi.org/10.1016/S2095-3119(21)63784-X
  19. Longchamp, M., Angeli, N., & Castrec-Rouelle, M. (2013). Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant and Soil362(1/2), 107-117. https://doi.org/1007/s11104-012-1259-7
  20. Malik, J.A., Kumar, S., Thakur, P., Sharma, S., Kau Raman Preet, N., Kaur, D.P., Bhandhari, K., Kaushal, N., Singh, K., Srivastav, A., & Nayyar, H. (2010). Promotion of growth in mungbean (Phaseolus aureus) by selenium is associated with stimulation of carbohydrate metabolism. Biological Trace Element Research, 143(1), 530-539. https://doi.org/10.1007/s12011-010-8872-1
  21. Malorgio, F., Diaz, K., & Ferrante, A. (2009). Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. Journal of the Science of Food and Agriculture, 89(13), 2243–2251. https://doi.org/ 10.1002/jsfa.3714
  22. Maneetong,, Chookhampaeng, S., Chantiratikul, A., Chinrasri, O., Thosaikham, W., Sittipout, R., & Chantiratikul, P. (2013). Hydroponic cultivation of selenium-enriched kale (Brassica oleracea var. alboglabra L.) seedling and speciation of selenium with HPLC–ICP-MS. Microchemical Journal, 108(1), 87-91. https://doi.org/ 10.1016/j.microc.2013.01.003
  23. Manzocco, L., Foschia, M., Tomasi, N., Maifreni, M., Dalla-Costa, L., Marino, M., Cortella, G., & Cesco, S. (2011). Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb’s lettuce (Valerianella locusta Laterr). Journal of the Science of Food and Agriculture, 91(8), 1373-1380. https://doi.org/10.1002/ jsfa.4313
  24. Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press, London.
  25. Marsic, N.K., & Osvald, J. (2002). Effects of different nitrogen levels on lettuce growth and nitrate accumulation in iceberg lettuce (Lactuca sativa Capitata) grown hydroponically under greenhouse conditions. Gartenbauwissenschaft, 67(4), 128-134.
  26. Pennanen, A., Xue, T.L., & Hartikainen, H. (2002). Protective role of selenium in plant subjected to severe UV irradiation stress. Journal of Applied Botany76(1-2), 66-76.
  27. Ramos, S., Faquin, V., Guilherme, L., Castro, E., Ávila, F., Carvalho, G., Bastos, C., & Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant, Soil and Environment, 56(12), 584-588. https://doi.org/10.17221/113/2010-PSE
  28. Rios, J.J., Blasco, B., Cervilla, L.M., Rosales, M.A., Sanchez-Rodriguez, E., Romero, L., & Ruiz, J.M. (2010). Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. Journal of the Science of Food and Agriculture, 90(11), 1914-1919. https://doi.org/10.1002/jsfa.4032
  29. Rios, J.J, Rosales, M.A., Blasco, B., Cervilla, L.M., Romero, L., & Ruiz, J.M. (2008). Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae, 116(3), 248-255. https://doi.org/1016/j.scienta.2008.01.008
  30. Risch H.A., Jain M., Choi N.W., Fodor J.G., Pfeiffer C.J., Howe G.R., Harrison L.W., Craib K.J.P., & Miller A.B. (1985). Dietary factors and the incidence of cancer of the stomach. American Journal of Epidemiology, 122(6), 947-949. https://doi.org/10.1093/oxfordjournals.aje.a114199
  31. Ruiz, J.M., Rivero, R.M., & Romero, L. (2017). Comparative effect of Al, Se, and Mo toxicity on NO3- assimilation in sunflower (Helianthus annuus) plants. Journal of Environmental Management, 83(2), 207-212. https://doi.org/ 10.1016/j.jenvman.2006.03.001
  32. Saffar Yazdi, A., Lahouti, M., & Ganjeali, A. (2012). The effects of different selenium concentrations on some morpho-physiological characteristics of spinach (Spinacia oleracea). Journal of Horticultural Science26(3), 292-300. (In Persian with English abstract). https://doi.org/10.22067/jhorts4.v0i0.15211
  33. Santamaria, P. (2006). Nitrate in vegetables: toxicity content, intake and EC regulation. Journal of the Science of Food and Agriculture, 86(1), 10-17. https://doi.org/10.1002/jsfa.2351
  34. Sharma, S., Bansal, A., Dhillon, S.K., & Dhillon, K.S. (2010). Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus). Plant and Soil329(1-2), 339-348. https://doi.org/ 10.1007/s11104-009-0162-3
  35. Tomasi, N., Pinton, R., Gottardi, S., Mimmo, T., Scampicchio, M., & Cesco, S. (2015). Selenium fortification of hydroponically grown corn salad (Valerianella locusta). Crop and Pasture Science, 66(11), 1128–1136. https://doi.org/10.1071/CP14218
  36. Sun, H.W., Ha, J., Liang, S.X., & Kang, W.J. (2010). Protective role of selenium on garlic growth under cadmium stress. Communications in Soil Science and Plant Analysis41(10), 1195-1204. https://doi.org/10.1080/0010362 1003721395
  37. US Department of Agriculture. (2001). Dietary reference intakes: elements. Available at http://www.iom.edu/Global/News Announcements/~/media/48FAAA2FD9E74D95BBDA2236E7387B49.ashx
  38. Van-der-Lugt, G., Holwerda, H.T., Hora, K., Bugter, M., Hardeman, J., & deVries, P. (2020). Nutrient Solutionsfor Greenhouse Crops. Geerten, 4, 1-98.

 

 

CAPTCHA Image