دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 طرح توسعه نیشکر و صنایع جانبی اهواز، خوزستان، ایران

10.22067/jsw.2025.91029.1452

چکیده

چرخه­های رشد فنولوژیکی نیشکر باعث تغییرات در نیازهای غذایی گیاه می‌شود، بنابراین تشخیص این امر مستلزم آگاهی کامل از مراحل رشد گیاه و تجزیه خاک و برگ گیاهان در مراحل رشدی می­باشد. قابلیت دسترسی عناصر غذایی مورد نیاز گیاه در مراحل رشدی گیاه از نکات کلیدی رشد نرمال گیاهان می­باشد به همین دلیل مدیریت تغذیه گیاه در دست‌یابی به عملکرد مطلوب نقش بسزایی دارد. با توجه به این تغییرات، روش تجزیه و تشخیص برگ می­تواند از محدودیت های ناشی از اختلالات تغذیه ایی گیاهان و مصرف بهینه کودی مورد نیاز در کشت نیشکر جلوگیری کند. روش تشخیص چندگانه عناصر غذایی (CND) یکی از روش‌های مناسب در تفسیر نتایج تجزیه عناصر غذایی در گیاه، نیازهای عناصر غذایی و وضعیت تعادل تغذیه‌ای در گیاهان می­باشد. هدف از این مطالعه ارزیابی وضعیت تغذیه‌ای نیشکر با روش تشخیص چندگانه عناصر غذایی در 25 مزرعه نیشکر بازروئی با واریته CP69-1062 و مساحت کل 541 هکتار در کشت و صنعت نیشکر امام خمینی شمال خوزستان و تعیین ترتیب محدودیت عناصر غذایی نیتروژن، فسفر، پتاسیم، کلسیم، منیزیم، مس، آهن، منگنز و روی بود که عملکرد نیشکر را از لحاظ تغذیه‌ای محدود می‌کنند. پایگاه داده شامل غلظت عناصر غذایی برگ نیشکر و عملکرد مزارع است که با جمع‌آوری نمونه‌های مرکب برگ نیشکر در شهریور ماه 1402 و انجام آنالیز، همچنین مشخص شدن عملکرد هر مزرعه پس از پایان برداشت، تشکیل شد. با استفاده از روش CND و تعیین اعداد مرجع و براساس تابع توزیع تجمعی واریانس، عملکرد 99 تن در هکتار نیشکر بعنوان عملکرد میانی مشخص شد در نتیجه مزارع نیشکر مورد مطالعه به دو گروه عملکردی مطلوب و نامطلوب تقسیم شدند. سپس شاخص‎های عناصر غذایی محاسبه و براساس آن اولویت‌بندی نیاز عناصر غذایی به‌ترتیب Cu>Fe>Zn>Mg>Mn>Ca>K>P>N مشخص گردید. میانگین شاخص تعادل تغذیه ای (r2) در مزراع گروه عملکردی نامطلوب (62/84) بود که نشان دهنده عدم تعادل تغذیه‌ای در این مزارع است. بنابراین از روش تشخیص چندگانه عناصر غذاییCND  می‌توان برای شناسایی محدودیت‌های تغذیه‌ای که مسئول عدم تعادل تغذیه‌ای هستند و می‌تواند منجر به بهره‌وری پایین نیشکر شود، استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation of Nutritional Status of Sugarcane Fields in North of Khuzestan Province Using the Compositional Nutrient Diagnosis Method

نویسندگان [English]

  • A. Neisi 1
  • M. Chorom 1
  • H. Ghafari 1
  • J. Alkasir 2

1 Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Sugarcane and Sideline Industries Development Project of Ahvaz, Khuzestan, Iran

چکیده [English]

Introduction
Sugarcane (Saccharum officinarum L.) is a perennial plant belonging to the cereal family. Sugarcane is a major agricultural crop cultivated extensively in tropical and subtropical regions worldwide. Its phenological growth cycles lead to changes in the plant's nutritional requirements. Understanding these changes requires comprehensive knowledge of the plant's growth stages, as well as the decomposition processes of soil and plant leaves throughout these stages. The availability of nutrients required by the plant during the growth stages of the plant is one of the key points of normal plant growth, therefore, plant nutrition management plays a significant role in achieving optimal performance. Considering these changes, the leaf analysis and diagnosis method can prevent the limitations caused by plant nutritional disorders and the optimal use of fertilizers required in sugarcane cultivation. The combined nutrient detection (CND) method is one of the appropriate methods in interpreting the results of plant nutrient analysis, nutrient requirements and nutritional balance status in plants. Performing leaf sample analysis is an effective approach to monitor and assess the nutritional status of sugarcane. Given that sugarcane may have a multi-year cycle, this method provides a reliable indicator for assessing the nutritional needs of the crop during its cultivation period. One of the effective methods for assessing nutritional limitations in sugarcane is through the CND method. This method provides the advantage of quickly delivering up-to-date standards while identifying specific nutrients responsible for nutritional imbalances that may reduce productivity. Additionally, it enables the detection of limitations caused by deficiencies and excesses, indicated by negative and positive indices, respectively. The aim of this study was to determine the order of limitation for nitrogen, phosphorus, potassium, calcium, magnesium, copper, iron, manganese, and zinc using the CND in the commercial sugarcane variety CP69-1062 grown in ratoon farms. In the northern Khuzestan farms, which have the potential for higher sugarcane production, nutritional limitations may still restrict productivity.
 
Materials and Methods
The present study was conducted in ratoon sugarcane fields in the Shuaibih area of Imam Khomeini sugarcane cultivation and industry. The objective of this study was to examine the impact of fertilization management and assess nutrient balance in the commercial sugarcane variety CP69-1062 grown in ratoon farms. To achieve this, 25 farms were selected during the 2023-2024 crop year. The concentrations of nitrogen, phosphorus, potassium, calcium, magnesium, iron, manganese, zinc, and copper were analyzed in the leaves of the sugarcane plants. After the harvest season, the yield of each field was measured and recorded. The intermediate yield, obtained using the Khayari method, allowed the farms to be divided into two groups based on whether the yield was favorable or unfavorable. Subsequently, CND reference numbers, CND nutrient index and nutrient balance index (r²) were calculated. This index was calculated using the Keith-Nielson method, based on the Chi-square statistical distribution function (K²) in Excel software.
 
Results and Discussion
The results of the cumulative distribution function of the variance of nutrients, with an intermediate yield of 99 tons per hectare, indicate that 52% of the studied ratoon sugarcane farms were in the high yield group and 48% were in the low yield group. After solving the equations of the cumulative function of the third order of the studied nutrients, the nutrient balance index values were found to fall within the range of (2.62 to 20.58) in the optimal performance group, with an average value of 109.28 tons per hectare. The highest value of this index (r2 = 199.95) was observed in the Raton sugarcane field, with a yield of 73.08 tons per hectare. The CND reference numbers of the evaluated nutrients and remaining compounds were as follows: V*N= 2.87, V*P= 1.04, V*K= 2.64, V*Ca =1.95, V*Mg =1.29, V*Fe = -1.75, V*Mn = -3.35, V*Zn = -4.72, V*Cu = -3. 92, and V*Rd = 4.13. The index of CND nutrients showed that copper and iron had the highest negative index among micronutrients in the group of low-yielding ratoon sugarcane fields. The presence of calcareous conditions in the soil of the studied fields can be one of the reasons for this observation.
 
Conclusion
The CND nutrient balance index (r2) was positive, especially in low-yielding ratoon sugarcane fields, and much higher than its value in high-yielding fields, which indicates nutritional imbalance in these fields. Proper management and balanced use of fertilizers should be considered. It can improve yield and growth cycle of sugarcane.

کلیدواژه‌ها [English]

  • Nutrient balance index
  • Nutritional restriction
  • Ratoon sugarcane
  • Yield

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Bataglia, O.C., Furlani, A.M.C., Teixeira, J.P.F., Furlani, P.R., & Gallo, J.R. (1983). Métodos de análise química de plantas. Campinas: Instituto Agronômico. (Boletim Técnico, 78).
  2. Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-Total. p. 595–622. In: Page A.L., Miller R.H., & Keeney D.R., (eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc. Soil Science of America, Inc. Madison, Wisconsin, USA. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
  3. Calheiros, L.C., Freire, F.J., Moura Filho, G., Oliveira, E.C., Moura, A.B., Costa, J.V., & Rezende, J.S. (2018). Assessment of nutrient balance in sugarcane using DRIS and CND methods. Journal of Agricultural Science, 10(9), 164-79. https://doi.org/10.5539/jas.v10n9p164
  4. da Silva, L.C., Freire, F.J., Filho, G.M., de Oliveira, E.C., Freire, M.B.G.D.S., Moura, A.B., & Rezende, J.S. (2021). Nutrient balance in sugarcane in Brazil: diagnosis, use and application in modern agriculture. Journal of Plant Nutrition, 44(14), 2167-2189. https://doi.org/10.1080/01904167.2021.1889591
  5. de Mello Prado, R., & Rozane, D.E. (2020). Leaf analysis as diagnostic tool for balanced fertilization in tropical fruits. Fruit Crops, 131-143. https://doi.org/10.1016/B978-0-12-818732-6.00011-3
  6. Gee, G.W., & Bauder, J.W. (1982). Particle size Analysis. p. 404–408. In: Page, A.L., Miller R.H., & Keeney D.R., (eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc. Soil Science of America, Inc. Madison, Wisconsin, USA.
  7. Helmke, P.A., & Sparks, D.L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods, 5, 551-574. ‏
  8. Rahimi Jamnani, M., Liaghat, A., & Sadeghi Loyeh, N. (2019). Sugarcane yield prediction at farm scale using remote sensing and artificial neural network. In 11th World Congress on Water Resources and Environment: Managing Water Resources for a Sustainable Future-EWRA 2019. Proceedings.‏
  9. Khiari, L., Parent, L.E., & Tremblay, N. (2001a). The phosphorus compositional nutrient diagnosis range for potato. Agronomy Journal, 93(4), 815-819. https://doi.org/10.2134/agronj2001.934815x
  10. Lindsay, W.L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428.‏ https://doi.org/10.2136/sssaj1978. 03615995004200030009x
  11. Martín, I., Romero, I., Domínguez, N., Benito, A., & García-Escudero, A. (2016). Comparison of DOP and DRIS methods for leaf nutritional diagnosis of Vitis vinifera, Cv. Tempranillo. Communications in Soil Science and Plant Analysis, 47(3), 375–86. https://doi.org/10.1080/00103624.2015.1123720
  12. McCray, J.M., & Mylavarapu, R. (2020). Sugarcane Nutrient Management Using Leaf Analysis: SS-AGR-335/AG345, 2/2020. EDIS, 2020(11).
  13. Montañés, L., Heras, L., Abadía, J., & Sanz, M. (1993). Plant analysis interpretation based on a new index: Deviation from optimum percentage (DOP). Journal of Plant Nutrition, 16, 1289–308.
  14. Murphy, J.A.M.E.S., & Riley, J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
  15. Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods, 5, 961-1010. ‏
  16. Nelson, R.E. (1982). Carbonate and Gypsum. p. 181–196. In: Page A.L., Miller R.H., & Keeney D.R., (eds.), Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc. Soil Science of America, Inc. Madison, Wisconsin, USA.
  17. Nowaki, R.H., Parent, S.É., Cecílio Filho, A.B., Rozane, D.E., Meneses, N.B., Silva, J.A., Natale, W., & Parent, L.E. (2017). Phosphorus over-fertilization and nutrient misbalance of irrigated tomato crops in Brazil. Frontiers in Plant Science, 8, 825. https://doi.org/10.3389/fpls.2017.00825
  18. Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture. ‏
  19. Parent, L.E., & Dafir, M. (1992). A theoretical concept of compositional nutrient diagnosis. Journal of the American Society for Horticultural Science, 117(2), 239-242.
  20. Parent, L.-É. (2011). Diagnosis of the nutrient compositional space of fruit crops. Revista Brasileira De Fruticultura, 33(1), 321–34. https://doi.org/10.1590/S0100-29452011000100041
  21. Pereira da Silva, G., & Justino Chiaia, H.L. (2021). Limitation due to nutritional deficiency and excess in sugarcane using the Integral Diagnosis and Recommendation System (DRIS) and Nutritional Composition Diagnosis (CND). Communications in Soil Science and Plant Analysis, 52(12), 1458 -1467. ‏
  22. Prado, R.M., & Caione, G. (2012). Plant analysis, Soil Fertility, 115–34. https://doi.org/10.5772/53388
  23. Rhoades, J.D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods, 5, 417-435. ‏
  24. Ross, S.M. (1987). Introduction to probability and statistics for engineers and scientists. John Wiley & Sons, New York, NY.
  25. Salman, M., Inamullah, Jamal, A., Mihoub, A., Saeed, M.F., Radicetti, E., & Pampana, S. (2023). Composting sugarcane filter mud with different sources differently benefits sweet maize. Agronomy, 13(3), 748. https://doi.org/10.3390/agronomy13030748
  26. Segato, S.V., A.S. Pinto, E., & Jendiroba, J.C.M. (2006). Nóbrega. Atualização em produção de cana-de-açúcar, 415. Piracicaba: PROL.
  27. Silva, G.P., Prado, R.D.M., Wadt, P.G.S., Moda, L.R., & Caione, G. (2020). Accuracy of nutritional diagnostics for phosphorus considering five standards by the method of diagnosing nutritional composition in sugarcane. Journal of Plant Nutrition, 43(10), 1485–97. https://doi.org/10.1080/01904167.2020.1730902

Zhao, D., Glaz, B., & Comstock, J.C. (2014). Physiological and growth responses of sugarcane genotypes to nitrogen N rate on a sand soil. Journal of Agronomy and Crop Science, 200, 290-301. https://doi.org/10.1111/jac.12084

CAPTCHA Image