دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

شوری یکی از عوامل تنش‌زا است که به‌طور مستقیم یا غیرمستقیم بر رشد و عملکرد گیاهان تأثیر می‌گذارد. به‌منظور ارزیابی تأثیر سیلیکون بر رشد و عملکرد نیشکر تحت تنش شوری حاصل از زه‌آب زراعت نیشکر، آزمایشی در دو سال‌ زراعی 1401- 1400 و 1402- 1401 به‌صورت گلدانی در مجموعه کشاورزی شرکت کشت و صنعت نیشکر دهخدا در قالب آزمایش اسپلیت اسپلیت پلات و طرح بلوک کامل تصادفی با سه تکرار اجرا شد. فاکتور اصلی آبیاری در سه سطح شوری 4/1 (شاهد)، 1/4 و 2/ 8 دسی‌زیمنس بر متر، دو واریته CP73-21 و CP69-1062 و زمان کاربرد سیلیکون در چهار سطح شاهد (بدون کاربرد سیلیکون)، یک‌ماه قبل از تنش، همزمان با تنش و یک‌ماه بعد از اعمال تنش شوری به‌عنوان فاکتور فرعی در نظر گرفته شد. نتایج نشان داد، تنش شوری ارتفاع ساقه نیشکر را به‌شدت کاهش داد. با آبیاری در سطح شوری 1/4 و 2/8 دسی‌زیمنس بر متر به‌ترتیب شاخص سبزینگی 3/22 و 27 درصد، رطوبت نسبی برگ 4/6 و 8/11 درصد، نشت الکترولیت 11 و 7/22 درصد، سرعت فتوسنتز 28 و 42 درصد نسبت به شاهد کاهش یافت. همچنین کاهش 1/14 و 5/33 درصدی ساکارز و 5/20 و 8/42 درصدی شکر سفید به‌ترتیب در آبیاری با سطوح شوری 1/4 و 2/8 دسی‌زیمنس بر متر، برای واریته CP69-1062 نسبت به تیمار شاهد بدون تنش مشاهده شد. واریته CP69-1062 در همه صفات رشدی و فیزیولوژیکی توانایی بهتری نسبت به واریته CP73-21 از خود نشان داد. بهترین زمان کاربرد کود سیلیکون یک‌ماه قبل از اعمال تنش بود که سبب افزایش معنی‌دار همه صفات مورد مطالعه در تیمارهای آبیاری شده با سطوح شوری 4/1 و 1/4 دسی‌زیمنس بر متر نسبت به عدم کاربرد سیلیکون گردید. با کاربرد سیلیکون درصدهای ساکارز، خلوص و شکر سفید به‌ترتیب 1، 7/3 و 3 درصد در واریته CP69-1062 افزایش یافت. نتایج این تحقیق نشان داد استفاده از زه‌آب با شوری بالا از طریق ایجاد تنش یونی و اسمزی سبب کاهش ارتفاع ساقه نیشکر می‌گردد. لذا در سال‌هایی که منابع آبی کاهش پیدا می‌یابد می‌توان با اختلاط زه‌آب‌ها با شوری پایین و آب رودخانه به تولید پایدار نیشکر ادامه داد. همچنین به‌منظور کاهش شرایط تنش شوری می‌توان با تغذیه زودهنگام نیشکر با کود سیلیکون از آسیب‌های تنش کاست.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Growth, Physiological and Sucrose Indicators of Sugarcane Varieties to Silicon Application under Salinity Conditions

نویسندگان [English]

  • A. Ansori Savari
  • , M. Nabipour
  • M. Farzaneh

Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

Introduction
The high water demand of sugarcane in arid and semi-arid regions, combined with declining rainfall, has led to increased use of drainage water as a strategy for sustainable production management. It has been estimated that 20% of all cultivated land and 33% of irrigated agricultural land are affected by high salinity. Salinity stress poses two main threats to plants: ionic toxicity and osmotic stress. Ionic toxicity occurs when there is a significant accumulation of Na⁺ in plant leaves under saline conditions. This disrupts the balance of water and ions, damages organelle structures, inhibits growth, and can ultimately lead to plant death. Some studies have shown that ion toxicity caused by Na+ can inflict more irreversible damage on plants than osmotic stress. Silicon application (Si) showed improved photosynthetic efficiency, growth, and yield compared to plants under salt stress. Previous studies have also shown that silicon treatments can increase salinity tolerance in various plants, including wheat, corn, rice, and canola. However, the extent of silicon-mediated benefits under salinity can vary greatly between species and is largely dependent on the plant's capacity for element uptake dictated by its genetic makeup. There is limited information regarding the use of drainage water in sugarcane irrigation management in arid and semi-arid regions, as well as the potential for improving salinity stress through silicon application. Therefore, this study was conducted to evaluate the effects of Si on two sugarcane varieties irrigated with salt water.
 
Materials and Methods
The pot experiment was conducted in a greenhouse under natural light at the agricultural site of Sugarcane Dehkhoda Company in Khuzestan Province, Iran, in 2021-2022. The temperature and humidity percentages are indicated in Figure 1. This study was carried out as split-split plot design based on randomized Block design (RBD). The main plot factors included three levels of salinity: control of 1.4±0.2 dS.m-1 (S0) from the river water source, salinity stress of 4.1±0.2 dS.m-1 (S1), and salinity stress of 8.2±0.2 dS.m-1 (S2) from the drain water source, with a sub-factor of variety treatment (CP73-21 and CP69-1062). The silicon application timing was also considered as a sub-factor, with four levels: Si0, non-silicon application (Control); Si1, one month before salinity stress; Si2, during salinity stress; and Si3, after 30 days of salt stress, silicon was applied. The sugarcane sprouts are grown in polyethylene pots 100 cm in height and 45 cm in width. Each pot contained 100 kg of soil. A total of 216 experimental units were used during the experiment. The experimental pots were filled with a mixture of field soil and sugarcane filter cake in a 3:1 ratio. The results of the chemical analysis of field soil and filter cake are presented in Table 2. The salt stress was applied 113 days after growing cuttings and continued until harvest.
 
Results and Discussion
The results of the first year showed that salt stress significantly reduced the height of the sugarcane stalk. Also, at the salinity stress levels of 4.1 and 8.2 dS/m, the SPAD index decreased by 22.3% and 27%, respectively. Additionally, leaf sheath moisture dropped by 6.4% and 11.8%, electrolyte leakage increased by 11% and 22.7%, and the photosynthesis rate decreased by 28% and 42% compared to the control treatment. The optimal time to apply silicone fertilizer was one month prior to the onset of stress, which resulted in a significant improvement in all studied traits at salinity stress levels of 1.4 dS/m (control) and 4.1 dS/m. Furthermore, the qualitative analysis of sugarcane syrup in the second year revealed a decrease in sucrose percentage (14.1% and 33.5%, respectively) and white sugar content (12.6% and 40.9%, respectively) at salinity stress levels of 4.1 and 8.2 dS/m. The photosynthesis rate of sugarcane leaves decreased by 28.3 to 41.8 percent under salt stress levels of 4.1 and 8.2 dS, respectively. The CP69-1062 variety exhibited a better response compared to the CP73-21 variety, showing relative superiority in all growth and physiological traits studied.
 
Conclusion
 The results also indicated that the optimal time to apply silicon fertilizer to sugarcane plants was one month before the onset of stress, resulting in a significant improvement in all studied traits. The application of silicon fertilizer led to a 1 percent increase in sucrose, 3.7 percent increase in syrup purity, and 3 percent increase in white sugar yield compared to no application.
 
Acknowledgments
 We would like to express our special thanks to the Faculty of Agriculture, Shahid Chamran University of Ahvaz for the financial support (Grant number SCU.AA98.336).

کلیدواژه‌ها [English]

  • Drainage water
  • Stem height
  • Sucrose percentage
  • Stress

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abbasi, R.P., Rafiq, K., Fatima, S., Javed, M.T., Azeem, M., & Akram, M.S. (2023). In vitro silicon supplementation enhanced acclimatisation and growth of sugarcane (Saccharum officinarum) via improved antioxidant and nutrient acquisition patterns in saline soil. Functional Plant Biology, 51(1), NULL. https://doi.org/10.1071/FP22275
  2. Abdelaal, K.A., EL-Maghraby, L.M., Elansary, H., Hafez, Y.M., Ibrahim, E.I., El-Banna, M., El-Esawi, M., & Elkelish, A. (2019). Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, 10(1), 26. https://doi.org/10.3390/agronomy10010026
  3. Al-Rubaiee, F.A.A. (2024). Mitigation of salinity stress effects in tomatoa (Lycopersicon esculentum) by using calcium chloride. Nabatia, 12(1), 26-42. https://doi.org/10.21070/nabatia.v12i1.1636
  4. Ali, M., Afzal, S., Parveen, A., Kamran, M., Javed, M.R., Abbasi, G.H., Malik, Z., Riaz, M., Ahmad, S., Chattha, M.S., Ali, M., Ali, Q., Uddin, M.Z., Rizwan, M., & Ali, S. (2021). Silicon mediated improvement in the growth and ion homeostasis by decreasing Na(+) uptake in maize (Zea mays) cultivars exposed to salinity stress. Plant Physiology Biochemical, 158, 208-218. https://doi.org/10.1016/j.plaphy.2020.10.040
  5. Aras, S., Keles, H., & Eşitken, A. (2020). Silicon nutrition counteracts salt-induced damage associated with changes in biochemical responses in apple. Bragantia, 79, 1-7. https://doi.org/10.1590/1678-4499.20190153
  6. Ashraf, M., Rahmatullah, Afzal, M., Ahmed, R., Mujeeb, F., Sarwar, A., & Ali, L. (2009). Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum). Plant and Soil, 326(1-2), 381-391. https://doi.org/10.1007/s11104-009-0019-9
  7. Ashraf, M., Shahzad, S.M., Imtiaz, M., Rizwan, M.S., & Iqbal, M.M. (2017). Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum ) under NaCl stress. Soil Environment, 36(1), 51-58. https:doi.org/10.25252/SE/17/31054
  8. Bocharnikova, E.A., Nikpay, A., Majumdar, S., Ziaee, M., & Matichenkov, V.V. (2023). Bioactive silicon: Approach to enhance sugarcane yield under stress environment. In Agro-industrial Perspectives on Sugarcane Production under Environmental Stress (pp. 85-105). Springer. https://doi.org/10.1007/978-981-19-3955-6_5
  9. Brindha, C., Vasantha, S., & Arunkumar, R. (2019). The response of sugarcane genotypes subjected to salinity stress at different growth phases. Journal of Plant Stress Physiology, 5, 28-33. https://doi.org/10.25081/jpsp.2019.v5.5643
  10. Chao, D.Y., Dilkes, B., Luo, H., Douglas, A., Yakubova, E., Lahner, B., & Salt, D.E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science, 341(6146), 658-659. https:// doi.org/10.1126/science.1240561
  11. Che, Y., Fan, D., Wang, Z., Xu, N., Zhang, H., Sun, G., & Chow, W.S. (2022). Potassium mitigates salt-stress impacts on photosynthesis by alleviation of the proton diffusion potential in thylakoids. Environmental and Experimental Botany, 194, https://doi.org/10.1016/j.envexpbot.2021.104708
  12. Chen, J.C., & Chou, C.C. (1993). Cane sugar handbook: a manual for cane sugar manufacturers and their chemists. John Wiley & https://doi.org/10.1177/003072706400400412
  13. Dhansu, P., Kumar, R., Kumar, A., Vengavasi, K., Raja, A.K., Vasantha, S., Meena, M.R., Kulshreshtha, N., & Pandey, S.K. (2022). Differential physiological traits, ion homeostasis and cane yield of sub-tropical sugarcane varieties in response to long-term salinity stress. Sustainability, 14(20), 13246. https://doi.org/10.3390/su142013246
  14. Dhiman, P., Rajora, N., Bhardwaj, S., Sudhakaran, S.S., Kumar, A., Raturi, G., Chakraborty, K., Gupta, O. P., Devanna, B.N., Tripathi, D.K., & Deshmukh, R. (2021). Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol Biochem, 162, 110-123. https://doi.org/10.1016/j.plaphy.2021.02.023
  15. Ebeed, H.T., Ahmed, H.S., & Hassan, N.M. (2024). Silicon transporters in plants: Unravelling the molecular Nexus with sodium and potassium transporters under salinity stress. Plant Gene, 100453. FAO. (2024). faostat, https://doi.org/10.1016/j.plgene.2024.100453
  16. Flam-Shepherd, R., Huynh, W.Q., Coskun, D., Hamam, A.M., Britto, D.T., & Kronzucker, H.J. (2018). Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Experimental Botany, 69(7), 1679-1692. https://doi.org/10.1093/jxb/erx460
  17. Gehring, C. (2013). Cyclic Nucleotide Signaling in Plants.
  18. Gomathi, R., & Thandapani, T. (2005). Salt stress in relation to nutrient accumulation and quality of sugarcane genotypes. Sugar Technology, 7, 39-47. https://doi.org/10.1007/bf02942416
  19. Gong, H.J., Randall, D.P., & Flowers, T.J. (2006). Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa) seedlings by reducing bypass flow. Plant Cell Environment, 29(10), 1970-1979. https://doi.org/ 10.1111/j.1365-3040.2006.01572.x
  20. Guntzer, F., Keller, C., & Meunier, J.-D. (2011). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1), 201-213. https://org/10.1007/s13593-011-0039-8
  21. Hashemi, A., Abdolzadeh, A., & Sadeghipour, H.R. (2010). Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus , plants. Soil Science & Plant Nutrition, 56(2), 244-253. https://doi.org/10.1111/j.1747-0765.2009.00443.x
  22. Heile, A.O., Aslam, Z., Hussain, A., Aslam, M., Saleem, M.H., Abualreesh, M.H., Alatawi, A., & Ali, S. (2021). Alleviation of cadmium phytotoxicity using silicon fertilization in wheat by altering antioxidant metabolism and osmotic adjustment. Sustainability, 13(20), 11317. https://doi.org/10.3390/su132011317
  23. Hernandez-Apaolaza, L. (2014). Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta, 240(3), 447-458. https://doi.org/10.1007/s00425-014-2119-x
  24. Hoque, T.S., Sohag, A.A.M., Burritt, D.J., & Hossain, M.A. (2020). Salicylic acid-mediated salt stress tolerance in plants. Plant Phenolics in Sustainable Agriculture, 1, 1-38. https://doi.org/10.1007/978-981-15-4890-1_1
  25. Hussain, A., Khan, Z.I., Rashid, M.H., Ashraf, M., & Akhtar, M.S. (2003). Soil salinity effects on sugarcane productivity, biochemical characteristics, and invertase activity. Pakistan Journal of Life and Social Sciences, 1(2), 114-121.
  26. KG, A.B. (2009). International commission for uniform methods of sugar Analysis (ICUMSA).
  27. Khan, W.U.D., Aziz, T., Hussain, I., Ramzani, P.M.A., & Reichenauer, T.G. (2017). Silicon: a beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress. Archives of Agronomy and Soil Science, 63(5), 599-611. https://doi.org/10.1080/03650340.2016.1233322
  28. Lingle, S.E., & Wiegand, C.L. (1997). Soil salinity and sugarcane juice quality. Field Crops Research, 54(2-3), 259-268. https://doi.org/10.1016/S0378-4290(97)00058-0
  29. Munns, R., James, R.A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043. https://doi.org/10.1093/jxb/erj100
  30. Norozi, M., ValizadehKaji, B., Karimi, R., & Nikoogoftar Sedghi, M. (2019). Effects of foliar application of potassium and zinc on pistachio (Pistacia vera) fruit yield. International Journal of Horticultural Science and Technology, 6(1), 113-123.
  31. Parmesan, C., Morecroft, M.D., & Trisurat, Y. (2022). Climate change 2022: Impacts, adaptation and vulnerability https://www.ipcc.ch/report/ar6/wg2/
  32. Patade, V.Y., Suprasanna, P., & Bapat, V.A. (2008). Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum) callus cultures. Plant Growth Regulation, 55(3), 169-173. https://doi.org/10.1007/s10725-008-9270-y
  33. Rao, V.P., Sengar, R., Singh, S., & Sharma, V. (2015). Molecular and metabolic perspectives of sugarcane under salinity stress pressure. Progressive Agriculture, 15(1), 77-84.
  34. Ritchie, S.W., Nguyen, H.T., & Holaday, A.S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111. https://doi.org/10.2135/ cropsci1990.0011183X003000010025x
  35. Savant, N.K., Korndörfer, G.H., Datnoff, L.E., & Snyder, G.H. (1999). Silicon nutrition and sugarcane production: a review. Journal of Plant Nutrition, 22(12), 1853-1903. https://doi.org/10.1080/01904169909365761
  36. Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A.A., Jan, S., & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays ) under salinity stress. Journal of King Saud University-Science, 33(1), 101207. https://doi.org/10.1016/j.jksus.2020.10.004
  37. Shahid, M.A., Balal, R.M., Pervez, M.A., Abbas, T., AQUEEL, M.A., Javaid, M.M., & Garcia-Sanchez, F. (2015). Foliar spray of phyto-extracts supplemented with silicon: an efficacious strategy to alleviate the salinity-induced deleterious effects in pea (Pisum sativum). Turkish Journal of Botany, 39(3), 408-419. https://doi.org/10.3906/bot-1406-84
  38. Sharma, A., Singh, R.K., Singh, P., Vaishnav, A., Guo, D.-J., Verma, K.K., Li, D.-P., Song, X.-P., Malviya, M.K., & Khan, N. (2021). Insights into the bacterial and nitric oxide-induced salt tolerance in sugarcane and their growth-promoting abilities. Microorganisms, 9(11), 2203. https://doi.org/10.3390/microorganisms9112203
  39. Tuna, A.L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A.R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62(1), 10,16. https://doi.org/ 10.1016/j.envexpbot.2007.06.006
  40. Yan, G., Fan, X., Zheng, W., Gao, Z., Yin, C., Li, T., & Liang, Y. (2021). Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa). Journal Plant Physiology, 258-259, 153379. https://doi.org/10.1016/j.jplph.2021.153379
  41. Zhang, W., Yu, X., Li, M., Lang, D., Zhang, X., & Xie, Z. (2018). Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Protection, 107, 1-11. https://doi.org/10.1016/j.cropro.2018.01.005
  42. Zhao, D., Zhu, K., Momotaz, A., & Gao, X. (2020). Sugarcane plant growth and physiological responses to soil salinity during tillering and stalk elongation. Agriculture, 10(12), 608. https://doi.org/10.3390/agriculture10120608
  43. Zhao, Y., Aspinall, , & Paleg, L. (1992). Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing. Journal of Plant Physiology, 140(5), 541-543. https://doi.org/10.1016/S0176-1617(11)80785-6
  44. Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441-445. https://doi.org/10.1016/s1369-5266(03)00085-2

 

 

CAPTCHA Image