دوماهنامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی، دانشگاه تهران، تهران، ایران

2 گروه آموزشی علوم و فناوری‌های محیطی، دانشکده مهندسی انرژی و منابع پایدار، دانشگاه تهران، تهران، ایران

3 گروه آموزشی علوم و فناوری های محیطی، دانشکده مهندسی انرژی و منابع پایدار، دانشگاه تهران، تهران، ایران

چکیده

خشکسالی یکی از پدیده­های زیان‌­بار آب‌ و هوایی است که علاوه‌ بر آب‌های سطحی تأثیر آن بر منابع آب زیرزمینی نیز بایستی پایش و شناسایی شود. هدف اصلی مقاله حاضر، مطالعه و بررسی اثرات خشکسالی بر رفتار سفره آب زیرزمینی دشت قزوین با استفاده از شاخص خشکسالی منبع آب زیرزمینی (GRI) بوده است. برای این منظور تراز آب زیرزمینی به‌‌عنوان معیار اصلی مطالعه در چاه­هایی با کمترین، بیشترین و مقادیر متوسط افت، مورد بررسی قرار گرفت. از آمار سال­های 1390-1345 به دلیل کامل بودن اطلاعات استفاده و محاسبات و ارزیابی‌های لازم انجام شد. نتایج نشان داد که یک روند کاهشی در مقادیر شاخص GRI طی سال­های 1380-1375 وجود داشته و از طرف دیگر در همین محدوده زمانی، خشکسالی‌های با درجات بالا در سفره ‌آب زیرزمینی مورد مطالعه رخ داده است. همچنین نتایج بیانگر وجود همبستگی معنی‌داری در سطح 99 درصد شاخص خشکسالی هیدروژئولوژیکی GRI با شاخص خشکسالی هواشناسی SPI در مقیاس 48 ماهه و تاخیر زمانی سه ماهه می‌باشد. ارزیابی تعداد زیادی از چاه­های منطقه با شاخص GRI نشان داد که این شاخص عملکرد خوبی در دشت قزوین دارد. لذا با قاطعیت می­توان اظهار نمود که بدون نیاز به هیچ ضریب تعدیل و یا اصلاح خاصی، شاخص خشکسالی منبع آب زیرزمینی GRI برای آبخوان دشت قزوین به‌عنوان یک شاخص منطبق قابل استفاده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of the GRI Index Compliance in Groundwater Drought in the Qazvin Plain, Iran

نویسندگان [English]

  • M. Jamshidi Avanaki 1
  • , K. Ebrahimi 2
  • S.S. Hashemi 3

1 Department of Irrigation and Reclamation Engineering, Faculty of Agricultural, University of Tehran, Karaj, Iran

2 Department of Environmental Sciences and Technologies, Faculty of Energy and Sustainable Resources Engineering, University of Tehran, Tehran, Iran

3 Department of Environmental Sciences and Technologies, Faculty of Energy and Sustainable Resources Engineering, University of Tehran, Tehran, IRAN

چکیده [English]

Introduction
Drought, as an environmental crisis, not only impacts ecosystems but also poses risks to human activities and has significant negative effects. The occurrence of intermittent and prolonged droughts, along with significant fluctuations in climate, exacerbates water scarcity, particularly in surface water resources; thus, groundwater resources play a key role as a vital source for supplying water for various consumption needs.
Groundwater drought is one of the serious and increasing challenges that has been acutely felt in recent years. Climate change and increasing water demand in agricultural and industrial sectors has led to increase dextraction from groundwater sources, significantly affecting many plains and groundwater resources in the country, resulting in severe depletion. This has consequently led to water crises and recurrent droughts. Therefore, understanding the relationship between drought and the status of groundwater resources is crucial. This issue not only impacts agriculture and food security but also has negative effects on public health, the economy, and the environment. For this reason, proper and sustainable management of these resources in the face of drought challenges is essential.
 
Materials and Methods
The examination of hydrogeological droughts and the monitoring of groundwater levels is essential for providing appropriate solutions for the protection and management of water resources.
In the present study, the Groundwater Resource Index (GRI) was used to assess groundwater drought in the Qazvin Plain. Additionally, to explore the relationship between the GRI and the Standardized Precipitation Index (SPI) across different time scales, the correlation coefficient between the two indices was calculated. Subsequently, the GRI was localized within the plain by analyzing its values across various monitoring wells.
 
Results and Discussion
The high correlation between the GRI index and the SPI drought index over a 48-month timeframe indicated that groundwater resources in the Qazvin plain were influenced by both wet and dry weather phenomena, with a time lag of approximately three to six months before meteorological drought translated into groundwater drought. Eslamian et al. (2009) also reported a three-month time lag for the effects of drought on the groundwater resources of the Qazvin, Buin Zahra, and Hamadan plains in their research.
 
Conclusion
The localization study of the GRI index in the Qazvin Plain region concluded that the index is highly responsive for assessing and evaluating groundwater drought. It effectively identified wet and dry years and showed a strong alignment with the behavior of the groundwater table. The analysis of drought during the years from 1996-2001 also illustrated that the impacts of drought continued into subsequent years on groundwater resources, and according to the GRI index, the decline in groundwater levels persisted in later years. This was evident even with increased precipitation in 2002 and thereafter, where we continued to witness declines and the ongoing trend of groundwater drought.
 
Acknowledgments
We would like to thank the University of Tehran and the Water Resources Management Company of Iran for providing the necessary facilities to conduct this research study and prepare relevant papers.

کلیدواژه‌ها [English]

  • Correlation
  • Drought
  • Groundwater resource index
  • Qazvin Plain
  • SPI

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Aghchehkandi, A., Solaimani, K., Habibnezhad Roshan, M., & Shahedi, K. (2023). Evaluation impact of meteorological drought on groundwater level in Haraz watershed in Mazandaran province. Journal of Irrigation and Water Engineering, 14(1), 215-231. (In Persian with English abstract)
  2. Azizi, G. (2003). Relationship between recent drought and groundwater resources in Qazvin plain. Geographical Research, 35(3), 131-143. (In Persian)
  3. Brocque, A., Kath, J., & Smith, K. (2018). Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles. 561, 976-986 http://doi.org/10.1016/j.jhydrol.2018.04.059
  4. Chenari, M. (2006). Analysis of changes in various drought indices using the Markov chain; in the climatic samples of Southern Alborz. Tehran: Department of Irrigation and Reclamation Engineering, Faculty of Agriculture, University of Tehran. (In Persian)
  5. Climatology and aerology. (2011). Retrieved from https://climatology.ir (Last access 10 Jun2011)
  6. Eimani, M., & Talebi Esfandarani, A. (2011). Effects of drought on aquifer level changes in Yazd Bahabad plain, using GRI indicators and SPI. 4th Iran Water Resources Management Conference. Tehran: AmirKabir University. (In Persian) https://civilica.com/doc/117057/
  7. Eslamian, S., Nasri, M., & Rahimi, N. (2009). Wet and dry periods and it's effects on water resources changes in Buin Plain watershed. Geography and Environmental Planning 33, 75-90. https://www.magiran.com/p777361
  8. Hayes, M., Svoboda, M., & Wall, N. (1999). Drought monitoring and assessment. Water Environment Research, 71(2), 717-722. (In Persian with English abstract)
  9. Halder, S., Roy, M.B., & Roy, P.K. (2020). Analysis of groundwater level trend and groundwater drought using standard groundwater level index: A case study of an eastern river basin of west Bengal, India. SN Applied Sciences, 2(507). https://doi.org/10.1007/s42452-020-2302-6
  10. Hsu, K.C., Wang, C.H., Chen, K.C., Chen, C.T., & Ma, K.W. (2007). Climate induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Journal of Hydrogeology, 5, 903-913. https://doi.org/10.1007/ s10040-006-0137-x
  11. Jamshidi Avanaki, M. (2013). Assessment of drought effects on the groundwater involving drought indices. MSc Thesis, Faculty of Agriculture, University of Tehran.
  12. Khan, S., Gabriel, H.F., & Rana, T. (2008). Standard precipitation index to track drought and assess impact of rainfall on water tables in irrigation areas. Irrigation Drainage System, 22, 159–177. http://doi.org/10.1007/s10795-008-9049-3
  13. Lezzaik, K., Milewski, A., & Mullen, J. (2018). The groundwater risk index: development and application in the Middle East and North Africa region. Science Total Environment, 628, 1149-1164 https://doi.org/10.1016/ j.scitotenv.2018.02.066
  14. Malekinezhad, H., & Poorshareyati, R. (2011). Analysis of drought trends in the Marvast plain using the groundwater resource index (GRI). 4th Iran Water Resources Management Conference. Tehran: AmirKabir University. (In Persian with English abstract) https://civilica.com/doc/116924/
  15. McKee, T., Doesken, N., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, (pp. 179-184). Boston, Massachusetts: American Meteorological Society.
  16. Mendicino, G., & Senatore, A. (2008). A Ground water resorce index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Hydrology, 357, 282-302. https://doi.org/10.1016/j. jhydrol.2008.05.005
  17. Mohammadi Ghaleni, M., Ebrahimi, K., & Araghinejad, S. (2011). Assessment of the impact of drought on groundwater level fluctuations using the standardized precipitation index-case study Saveh aquifer. 4th Iran Water Resources Management Conference. Tehran: AmirKabir University. (In Persian with English abstract). https://civilica.com/doc/117068/
  18. Naderianfar, M., Faryabi, A., Kouhestan, S., & Safavi Gardini, M. (2021). Investigating the groundwater fluctuations level in basin of Halil River, Jiroft. Journal of Irrigation and Water Engineering, 11(4), 141-159. (In Persian with English abstract).
  19. Sarkar, M., & Chinnasamy, P. (2023). Assessing the impact of precipitation on Hardrock aquifer system using standard precipitation index and groundwater resilience index: a case study of Purulia, West Bengal, India. Environmental Science and Pollution Researc, 1-16. https://doi.org/10.1007/s11356-023-30158-8
  20. Seif, M., Mosaedi, A., & Mohammadzadeh, H. (2011). Investigation of hydrogeological drought in the Fasa plain aquifer using the Groundwater Resource Index (GRI). 15th Symposium of Geological Society of Iran. Tehran: Tarbiat Moallem University. (In Persian). https://civilica.com/doc/135215/
  21. Solaimani, K., Ramezani, N., Ahmadi, M.Z., & Bayat, F. (2005). Analysis of drought and flood trends in the watersheds of Mazandaran. Journal of Agricultural Sciences and Natural Resources of the Caspian Sea, 3(1), 13-28. (In Persian). https://www.magiran.com/p331910
  22. Stagge, J., Hayes, M., & Svoboda, M. (2017). Drought Monitoring: The Standardized Precipitation Index. Klüver Academic Publishers.
  23. Weather Report. (2020), United Nations Economic and Social Commission for Asia and the Pacific.

 

CAPTCHA Image