پهنه بندی هدایت هیدرولیکی اشباع خاک در حوضه آبخیز ناورود اسالم استان گیلان

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه گیلان

چکیده

حرکت آب در ناحیه ی غیراشباع خاک اغلب با معادله ی ریچاردز مورد بررسی قرار می گیرد. به منظور حل این معادله بایستی شرایط اولیه و مرزی مربوط به فشار آب و هدایت هیدرولیکی خاک به صورت توابعی از رطوبت خاک تعیین شود. روش بیرکن به منظور استخراج مشخصات هیدرولیکی و رطوبتی خاک در ناحیه ی غیراشباع توسعه یافته است. در این روش از تابع رطوبت خاک ونگونختن با شرایط بوردین و تابع هدایت هیدرولیکی بروکس و کوری برای توصیف منحنی های مشخصه ی هیدرولیکی خاک استفاده شده است. روش بیرکن، منحنی های مشخصه ی هیدرولیکی خاک را که وابسته به بافت خاک است از تحلیل توزیع دانه بندی خاک و پارامترهای شکلی را که وابسته به ساختمان خاک است از اندازه گیری صحرایی نفوذ تحت بار هیدرولیکی ناچیز، تخمین می زند. هدف از پژوهش حاضر تحلیل تغییرات مکانی و تهیه نقشه پهنه بندی هدایت هیدرولیکی اشباع خاک در مقیاس حوضه آبخیز است. در این مطالعه حوضه ناورود اسالم با مساحت 307 کیلومتر مربع با فواصل دو کیلومتر شبکه بندی شد و در گره-های ایجاد شده اندازه گیری نفوذ با استفاده از تک استوانه بیرکن صورت گرفت. بررسی تغییرات مکانی با نرم افزار GS+ و تهیه نقشه پهنه بندی هدایت هیدرولیکی اشباع خاک حوضه آبخیز با استفاده از نرم افزار ArcGIS صورت گرفت. نتایج نشان داد که متوسط هدایت هیدرولیکی اشباع حوضه مورد مطالعه 96/3 سانتی متر بر ساعت با ضریب تغییرات 151 درصد بود. میزان شعاع تاثیر 2280 متر و ضریب تبیین مدل نمایی برازش داده شده 953/0 تعیین شد. از نتایج تحقیق حاضر می توان در مدیریت کارآمد حوضه آبخیز استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Mapping of Soil Saturated Hydraulic Conductivity in Navroud-Assalem Watershed in Guilan Province

نویسندگان [English]

  • M.R. Khaledian
  • S.A. Moussavi
  • H. Asadi
  • M. Norouzi
  • M. Aligoli
University of Guilan
چکیده [English]

Introduction: With increasing awareness of human beings towards the environment, researchers pay more attention to process and redistribution of water flow and solute transport in the soil and groundwater. Moreover, determination of soil hydraulic conductivity is necessary to determine the runoff from basins. Water movement within the unsaturated zone is often described by the formulae proposed by Richards. To solve this equation, initial and boundary conditions of the hydraulic conductivity and the soil water pressure should be determined as functions of soil water content. Beerkan method was developed to identify retention and hydraulic conductivity curves. In this method, van Gunechten with Burdine condition and Brooks and Corey equations were used to describe water retention and hydraulic conductivity curves. Recognition of the spatial pattern of studied parameter using semivariogram and then preparing zoning map with interpolation methods such as IDW and kriging can help us in relevant watershed management. The aim of this study was to spatial analyze of saturated hydraulic conductivity from 50 infiltration tests at watershed scale using Beerkan method and then preparing zoning map for the Navroud watershed.
Materials and Methods: Navroud-Assalem watershed with an area of about 307 km2 is located in the west part of Guilan province, within the city of Talesh. Of the total watershed area of Navroud, about 41 km2 is plains and the rest of it is about 266 km2, corresponding to the mountainous area. The study area includes an area with a height above 130 m. In order to complete the database of the studied watershed the present study was designed to assess soil saturated hydraulic conductivity. In this study, a 2×2 km network was designed in Navroud watershed with a surface area of 307 km2, and then infiltration tests were carried out in each node using single ring of Beerkan. Beerkan method derives shape parameters from particle-size distribution and normalization parameters from infiltration test with a near zero pressure head. Evaluation of spatial variation was done using GS+ and zoning map was prepared with ArcGIS software. Statistical evaluation of recorded data was done using SPSS software package.
Results and Discussion: Results showed that the soil bulk density was of 1.07 gr cm-3 in average. Furthermore, the results showed that the average of saturated hydraulic conductivity (Ks) in the watershed was of 3.96 cm hr-1 with a coefficient of variation of 151%. The watershed Ks is classified in the moderate class. Regarding the high value of Ks variation coefficient, using geostatistics is necessary to analyze Ks spatial variation. The results indicate the absence of the anisotropy. Using GS+ software, exponential model was fit on the empirical variation (r2=0.953 and RSS=0.0057 cm hr-1). The effective range was of 2280 m. The difference between the amounts reported by other studies and this study was because of the effect of the difference in the study area (307 km, in this study), scale (the field or watershed) and the distance between measured points. Two usual methods of interpolation including inverse distance weighting and ordinal kriging were verified. The results showed that ordinal kriging performed better than inverse distance weighting method (RMSEs for ordinal kriging and inverse distance weighting were 8.97 and 9.75, respectively). Zoning map of Ks was prepared according to the results of GS+ software using ArcGIS software. The correlation coefficients between Ks and sand, silt and clay percents were -0.04, 0.01 and 0.07, which demonstrate a weak effect of soil texture on the Ks as compared with soil structure. The correlation coefficient of the soil bulk density with Ks was of -0.45 which demonstrate a stronger effect as compared with the soil texture.
Conclusions: The results of this study can be used to proper management of watersheds. One of the main information needed to manage a watershed is Ks. Determining the spatial variability of soil saturated hydraulic conductivity at watershed scale in spite of its difficulty is one of the main prerequisite parameters to provide detailed maps of a watershed. The aim of this study was to analyze the spatial variability of Ks in Navroud-Assalem watershed, Guilan province. After analyzing spatial data, using ordinary kriging interpolation method, zoning map of Ks was prepared. This map can be used to find the optimal management of watershed, such as determining the amount of basin runoff and groundwater recharge.

کلیدواژه‌ها [English]

  • Beerkan
  • Infiltration
  • Spatial variation
1- Arslan H. 2012. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agricultural Water Management, 113(2012):57-63.
2- Braud I., Haverkamp R., Arrue J.L., and Lopez M.V. 2003. Spatial variability of soil surface properties and consequences for the annual and monthly water balance of a semiarid environment (EFEDA Experiment). Journal of Hydrometeorology, 4:121–137.
3- Bybordi M. 1993. Principles of Irrigation Engineering. Vol. 1. Water and Soil Relationship. Tehran University Press. N° 1449/1. (in Persian)
4- De Condappa D. 2005. Etude de l’ecoulement d’eau à travers la zone non-saturee des aquifères de socle à l’echelle spatiale du bassin versant. Application à l’evaluation de la recharge au sein du bassin versant de Maheshwaram, andhar Pradesh, Inde. Thèse de doctorat, Institut national polytechnique de Grenoble, France (in French with English abstract)
5- Delleur J.W. 2007. The Handbook of Groundwater Engineering. Second edition. CRC Press, New York, 1342 p.
6- Dingman S.L. 2002. Physical Hydrology. 2nd edition, Prentice-Hall Inc. USA.
7- Downer C.W., and Ogden F.L. 2004. GSSHA: Model to simulate diverse stream flow producing processes. Journal of Hydrologic Engineering, 9(3):161-174.
8- Galle S., Angulo Jaramillo R., Braud I., Boubkraoui S., Bouchez J.M., de Condappa D., Derive A., Gohoungssou G., Haverkamp R., Reggiani P., and Soria-Ugaldes J. 2001. Estimation of soil hydrodynamic properties of the Donga watershed (CATCH Benin). In Proceedings of the GEWEX 4th International Conference, 10–14 Sept. 2001. Pierre Simon Laplace Institute, Paris, France.
9- Gee G.W., and Or D. 2002. Particle-size analysis. In: J.H. Dane. And G.C. Topp. (Eds), Methods of soil analysis, Part 4- Physical methods. Agronomy Monograph, vol. 9. ASA and SSSA. Madison. WI. Pp 255-293.
10- Haverkamp R., Angulo R., Braud I., de Condappa D.I., Debionne S., Gandola F., Roessle S., Ross P.J., Sander G., Vachaud G., Vardo N., Viallet P., and Zin I. 2004. POWER: Planner Oriented Watershed modeling system for Environmental Responses. Development and first implementation. Final report AgriBPMWater, Projet CEE n° EVK1-1999-000117, Laboratoire d’Etude des Transferts en Hydrologie et Environnement. Grenoble Cedex 9, France.
11- Haverkamp R., Arrue J.L., Vandervaere J.P., Braud I., Boulet G., Laurent J.P., Taha A., Ross P.J., and Angulo-Jaramillo R. 1996. Hydrological and thermal behavior of the vadose zone in the area of Barrax and Tomelloso (Spain): experimental study, analysis and modeling. Project UE, No. EV5C-CT 92 00 90.
12- Hillel D. 1998. Environmental Soil Physics. Academic Press. Sand Diego, CA.
13- Hillel D. 2010. Soil Physics and Environment, translated by: Ghahraman B. Ferdowsi University of Mashhad Press, Mashhad, Iran. N° 572. (in Persian)
14- Iqbal J., Thomasson A., Jenkins J.N., Owens P.R., and Whisler F.D. 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69:1338-1350.
15- Khaledian M. 2011. Introducing a simple technic to measure soil infiltration properties. P. 1-3. In Proceeding of the 11th Scientific-Research Congress of Guilan University, 9-11 May 2011. University of Guilan, Rasht, Iran. (in Persian).
16- Khaledian M., Moussavi S.A., Assadi H., and Nowrouzi M. 2011. Determination of saturated hydraulic conductivity using Beerkan method in watershed to use in Hydrological model. p. 1-5. In Proceeding of the 12th Iranian Soil Sciences Congress, 3-5 Sep. 2011. University of Tabriz, Tabriz, Iran. (in Persian with English abstract)
17- Lassabatere L., Angulo-Jaramillo R., Soria-Ugalde J.M., Cuenca R., Braud I., and Haverkamp R. 2006. Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Science Society of America Journal, 70:521–532.
18- Mallants D., Mohanty D.B.P., and Feyen J. 1996. Spatial variability of hydraulic properties in a multilayered soil profile. Soil Science, 161(3):167-181.
19- Mohammadi J. 2006. Geostatistics. Pelk Press, Tehran. (in Persian)
20- Motaghian H.R., Karimi A., and Mohammadi J. 2008. Analysis of spatial variability of specific physical and hydraulic properties of soil on a catchment scale. Water and Soil Journal, 22(2):432-446. (in Persian with English abstract)
21- Mubarak I., Angulo-Jaramillo R., Mailhol J.C., Ruelle P., Khaledian M., and Vauclin M. 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agricultural Water Management, 97:1517-1526.
22- Mubarak I., Mailhol J.C., Angulo-Jaramillo R., Ruelle P., Boivin P., and Khaledian M. 2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma, 150:158-165.
23- Mulla D.J., and McBratney A.B. 2002. Soil spatial variability. In M. E. Sumner, (ed.), Handbook of Soil Science. CRC Press, London, pp. A321-A352.
24- Richards L.A. 1931. Capillary conduction of liquids through porous mediums. Physics, 1:318–333.
CAPTCHA Image