یعقوب دین پیش بینی جریان رودخانه با روش جمعی احتمالاتی نزدیکترین همسایگی

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه تبریز

چکیده

پیش بینی احتمالاتی متغیرهای هیدرولوژیکی در سال های اخیر از جمله جریان رودخانه مورد توجه محققین بوده است. پژوهش حاضر دو روش مختلف احتمالاتی را برایپیش بینی جریان رودخانه استفادهمی کند. سپس میزان عدم قطعیت ناشی از پیش بینی به صورت کمی معین می-شود.تخمین گرهای خطیدر یکی از روش ها و در دیگری الگوریتم نزدیکترین همسایگی استفاده شد. دبیروزانه به مدت دوازده سال در دو ایستگاه آبسنجیدیزج و ماشین به ترتیب واقع در خروجیحوضه های آبریز باراندوزچای در استان آذربایجان غربیو رود زرد در استان خوزستاناستفاده شد. شش سال اول داده ها جهت برازش، سه سال بعدی برای واسنجی و 3 سال پایانی جهت آزمون الگو ها استفاده شدند.ترکیبات مختلفی از داده های ثبت شده دبی روزانه به عنوان الگوی ورودی برای پیش بینی دبی روزانه استفاده شد. به کارگیری روش های مورد استفاده به صورت جمعی (به منظور انتخاب پارامترهای بهینه الگو)منجر به بهبود و افزایش دقت الگو در پیش بینی جریان رودخانه شد. از شاخص های آماری شامل ضریب همبستگی، ریشه میانگین مربعات خطا و ضریب کارایی ناش- ساتکلیف برای ارزیابی عملکرد الگوها استفاده شد.نتایج به دست آمده در این تحقیق کارایی و اعتبار روش های مورد استفاده را تائید نمود. همچنین نتایج به دست آمده نشان داد که روش جمعی مبتنی بر الگوریتم نزدیکترین همسایگی عملکرد بهتری در مقایسه با روش جمعی غیرخطی احتمالاتی دارد و از عدم قطعیت کمتری در پیش بینی برخوردار است. مقدار ضریب کارایی ناش- ساتکلیف در روش جمعی مبتنی بر نزدیکترین همسایگی در ایستگاه های دیزج و ماشین در دوره آزمون الگو به ترتیب برابر 91/0 و 93/0 به دست آمدند.

کلیدواژه‌ها


عنوان مقاله [English]

River Flow Prediction Using the Nearest Neighbor Probabilistic Ensemble Method

نویسندگان [English]

  • H. Sanikhani
  • Y. Dinpashoh
  • M. A. Ghorbani
  • M. Zarghami
University of Tabriz
چکیده [English]

Introduction: In the recent years, researchers interested on probabilistic forecasting of hydrologic variables such river flow.A probabilistic approach aims at quantifying the prediction reliability through a probability distribution function or a prediction interval for the unknown future value. The evaluation of the uncertainty associated to the forecast is seen as a fundamental information, not only to correctly assess the prediction, but also to compare forecasts from different methods and to evaluate actions and decisions conditionally on the expected values. Several probabilistic approaches have been proposed in the literature, including (1) methods that use resampling techniques to assess parameter and model uncertainty, such as the Metropolis algorithm or the Generalized Likelihood Uncertainty Estimation (GLUE) methodology for an application to runoff prediction), (2) methods based on processing the forecast errors of past data to produce the probability distributions of future values and (3) methods that evaluate how the uncertainty propagates from the rainfall forecast to the river discharge prediction, as the Bayesian forecasting system.
Materials and Methods: In this study, two different probabilistic methods are used for river flow prediction.Then the uncertainty related to the forecast is quantified. One approach is based on linear predictors and in the other, nearest neighbor was used. The nonlinear probabilistic ensemble can be used for nonlinear time series analysis using locally linear predictors, while NNPE utilize a method adapted for one step ahead nearest neighbor methods. In this regard, daily river discharge (twelve years) of Dizaj and Mashin Stations on Baranduz-Chay basin in west Azerbijan and Zard-River basin in Khouzestan provinces were used, respectively. The first six years of data was applied for fitting the model. The next three years was used to calibration and the remained three yeas utilized for testing the models. Different combinations of recorded data were used as the input pattern to streamflow forecasting.
Results and Discussion: Application of the used approaches in ensemble form (in order to choice the optimized parameters) improved the model accuracy and robustness in prediction. Different statistical criteria including correlation coefficient (R), root mean squared error (RMSE) and Nash–Sutcliffe efficiency coefficient (E) were used for evaluating the performance of models. The ranges of parameter values to be covered in the ensemble prediction have been identified by some preliminary tests on the calibration set. Since very small values of k have been found to produce unacceptable results due to the presence of noise, the minimum value is fixed at 100 and trial values are taken up to 10000 (k = 100, 200, 300,500, 1000, 2000, 5000, 10000). The values of mare chosen between 1 and 20 and delay time values γ are tested in the range [1,5]. With increasing the discharge values, the width of confidence band increased and the maximum confidence band is related to maximum river flows. In Dizaj station, for ensemble numbers in the range of 50-100, the variation of RMSE is linear. The variation of RMSE in Mashin station is linear for ensemble members in the range of 100-150. It seems the numbers of ensemble members equals to 100 is suitable for pattern construction. The performance of NNPE model was acceptable for two stations. The number of points excluded 95% confidence interval were equal to 108 and 96 for Dizaj and Mashin stations, respectively. The results showed that the performance of model was better in prediction of minimum and median discharge in comparing maximum values.
Conclusion: The results confirmed the performance and reliability of applied methods. The results indicated the better performance and lower uncertainty of ensemble method based on nearest neighbor in comparison with probabilistic nonlinear ensemble method. Nash–Sutcliffe model efficiency coefficient (E) for nearest neighbor probabilistic ensemble method in Dizaj and Mashin Stations during test period of model obtained 0.91 and 0.93, respectively.The investigation on the performance of models in different basins showed that the models have better performance in Zard river basin compared to Baranduz-Chaybasin. Furthermore the variation of discharge values during test period in Zard basin was lower in comparison of Baranduz-Chay basin. The real advantage of including streamflow forecasts requires detailed and specific investigations, but the preliminary results suggest the good potentiality of probabilistic NLP method. Using ensemble prediction method can help to decision makers in order to determine the uncertainty of prediction in water resources field.

کلیدواژه‌ها [English]

  • Baranduz-Chay
  • Dizaj
  • Hydrologic Variables
  • Zard River
  • Mashin
Azmi M., and Araghinejad S. 2012. Developed K-nearest neighbor method for river flow prediction. Journal of Water and Wastewater, 2: 108-119.
2- Alfieri L., Thielen J., and Pappenberger F. 2012. Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland. Journal of Hydrology, 424: 143-153.
3- Casdagli M. 1992.Chaos and deterministic versus stochastic nonlinearmodeling.Journal of the Royal Statistical Society, Series B (Methodological), 54(2): 303-328.
4- Chatfield C. 2001. Prediction intervals, in Principles of Forecasting: AHandbook for Researchers and Practitioners, edited by J. Armstrong, Springer, New York.
5- Fan F. M., Collischonn W., Meller A., and Botelho L.C.M. 2014. Ensemble streamflow forecasting experiments in a tropical basin: The Sao Francisco river case study. Journal of Hydrology, In Press.
6- Hampel F.R. 1974.The influence curve and its role in robust estimation.Journal of the American Statistical Association, 346: 383-393.
7- Herr H.D., and Krzysztofowicz R. 2010. Bayesian ensemble forecast of river stages and ensemble size requirements. Journal of Hydrology, 387: 151–164.
8- Kantz H., and Schreiber T. 1997.Nonlinear Time Series Analysis.CambridgeUniv.Press, New York.
9- Kember G., Flower A.C., and HolubeshenJ. 1993. Forecasting river flow using nonlinear dynamics.Stochastic Hydrology and Hydraulics, 7: 205–212.
10- Krzysztofowicz R. 1999. Bayesian theory of probabilistic forecasting viadeterministichydrologic model, Water Resources Research, 35(9), 2739-2750.
11- Kuczera G., and Parent E. 1998. Monte Carlo assessment of parameteruncertainty in conceptual catchment models: The Metropolis algorithm, Journal of Hydrology, 211: 69-85.
12- Laio F., PorporatoA. Revelli R., and RidolfiL. 2003. A comparison ofnonlinear flood forecasting methods, Water Resources Research, 39(5).
13- Montanari A., and BrathA. 2004. A stochastic approach for assessing theuncertainty of rainfall-runoff simulations.Water Resources Research, 40(1).
14- Pande P., McKee M., and Bastidas L.A. 2009.Complexity-based robust hydrologic prediction.Water Resources Research, 45, W10406.
15- Phoon K. K., Islam M. N., Liaw C. Y., and Liong S.Y. 2002. Practicalinverse approach for forecasting nonlinear hydrological time series. Journal of HydrologicEngineering, 7(2): 116-128.
16- Porporato A., and Ridolfi L. 1997. Nonlinear analysis of river flow timesequences. Water Resources Research, 33(6): 1353– 1367.
17- Regonda S.K., Rajagopalan B., Lall M., Clark U., and Moon Y.I. 2005.Local polynomial method for ensemble forecast of time series. NonlinearProcesses Geophysics, 12(3):397-406.
18- Regonda S.K., Rajagopalan B., Clark M., and Zagona E. 2006. A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin. Water Resources Research, 42, W09404.
19- Silvillo J.K., Ahlquist J.E., and Toth Z. 1997. An ensemble forecasting primer. Weather and Forecasting, 12: 809-818.
20- Sivakumar B. 2000. Chaos theory in hydrology: Important issues andinterpretations. Journal of Hydrology, 227:1-20.
21- Sharma A., and Lall U. 1999. A nonparametric approach for daily rainfall simulation. Mathematics and Computers in Simulation, 48: 361-371.
22- Tamea S., Laio F., and Ridolfi L. 2005. Probabilistic nonlinear prediction of river flows. Water Resources Research, 41, W09421.
23- Todini E. 2004. Role and treatment of uncertainty in real-time floodforecasting. Hydrological Processes, 18(14): 2743-2746.
24- Wu C.L., and Chau K.W. 2010. Data-driven models for monthly streamflow time series prediction. Engineering Applications of Artificial Intelligence, 23:1350–1367.