شکل های معدنی فسفر و ارتباط آن با ویژگی های خاک در برخی خاک های آهکی استان فارس

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه شیراز

چکیده

فسفر به‌عنوان یک عنصر ضروری در تولید محصولات کشاورزی به شمار می رود. تعیین شکل های مختلف فسفر در خاک در ارزیابی وضعیت فسفر خاک مهم است. به همین منظور، مقدار و توزیع فسفر در شکل های معدنی در 49 نمونه خاک استان فارس بررسی شد. خاک ها به‌صورت دنباله‌ای به‌منظور تعیین اجزای معدنی فسفر عصاره گیری شدند. فسفات معدنی به شش جزء شامل: دی کلسیم فسفات، اکتا کلسیم فسفات، آپاتیت، فسفات پیوند شده با آلومینیوم، فسفات پیوند شده با آهن و فسفر حبس شده درون اکسیدهای آهن تفکیک شدند. نتایج این تحقیق نشان داد که دامنه اجزای مختلف فسفر دارای تغییرات زیادی بود. تغییرات فسفر کل خاک ها در دامنه 68/1458-87/301 با میانگین 63/626 میلی‌گرم در کیلوگرم بود. دامنه تغییرات فسفات های کلسیم 83/147- 90/666 با میانگین 79/324 میلی‌گرم در کیلوگرم خاک بود که 85 درصد فسفر معدنی و 52 درصد از فسفر کل را تشکیل می دهد که شکل غالب فسفر خاک است. دامنه تغییرات فسفات پیوند شده با آهن 18/59- 38/0 با میانگین 56/7 میلی‌گرم در کیلوگرم خاک بود که 97/1 درصد فسفر معدنی و 21/1 درصد از فسفر کل را تشکیل می دهد. دامنه تغییرات فسفات پیوند شده با آلومینیوم 09/123-49/20 با میانگین 28/52 میلی‌گرم در کیلوگرم خاک بود که 64/13 درصد فسفر معدنی و 34/8 درصد از فسفر کل را تشکیل می دهد. نتایج مطالعات همبستگی نشان داد که فسفر قابل دسترس (فسفر عصاره گیری شده به روش اولسن) همبستگی معنی داری با دی کلسیم فسفات، اکتاکلسیم فسفات، فسفات پیوند شده با آلومینیوم، آپاتیت و فسفر کل داشت؛ بنابراین در خاک‌های آهکی تعیین ویژگی‌های فیزیکی و شیمیایی و شکل‌های معدنی فسفر خاک و ارتباط آن‌ها با یکدیگر، اطلاعات مفیدی را برای ارزیابی وضعیت فسفر و نیز حاصلخیزی خاک و تغذیه گیاه در اختیار می‌گذارد.

کلیدواژه‌ها


عنوان مقاله [English]

Inorganic Phosphorus Fractions and Their Relationships with Soil Characteristics of Selected Calcareous Soils of Fars Province

نویسندگان [English]

  • abolfazl azadi
  • M. Baghernejad
  • N. A. Karimian
  • S. A. Abtahi
Shiraz University
چکیده [English]

Introduction: Phosphorus (P) is the second limiting nutrient in soils for crop production after nitrogen. Phosphorus is an essential nutrient in crop production. Determination of forms of soil phosphorus is important in the evaluation of soil phosphorus status. Various sequential P fractionation procedures have been used to identify the forms of P and to determine the distribution of P fractions in soils (Chang and Jackson, 1957, Williams et al., 1967; Hedley et al., 1982), but are not particularly sensitive to the various P compounds that may exist in calcareous soils. A Sequential fractionation scheme has been suggested for calcareous soils by which three types of Ca-phosphates i.e. dicalcium phosphate, octacalcium phosphate, and apatite could be identified (Jiang and Gu, 1989). These types of Ca-phosphates were described as Ca2-P (NaHCO3-extractable P), Ca8-P (NH4AC-extractable P) and Ca10-P (apatite type), respectively. In this study, the amount and distribution of soil inorganic phosphorus fractions were examined in 49 soil samples of Fars province according to the method described by Jiang and Gu (1989).
Materials and Methods: Based on the previous soil survey maps of Fars province and According to Soil Moisture and Temperature Regime Map of Iran (Banaei, 1998), three regions (abadeh, eghlid and noorabad) with different Soil Moisture and Temperature Regimes were selected. The soils were comprised Aridic, xeric, and ustic moisture regimes along with mesic, and hyperthemic temperature regimes. 49 representative samples were selected. The soil samples were air-dried and were passed through a 2-mm sieve before analysis. Particle size distribution was determined by hydrometer method (Gee and Bauder 1996). Also, Cation exchange capacity (CEC; Sumner and Miller 1996), calcium carbonate equivalent (Loeppert and Suarez 1996), organic matter content (Nelson and Sommers 1996), and pH by saturated paste method (Thomas 1996) were determined . Inorganic phosphorus sequential fractionation scheme was preformed according to the method described by Jiang and Gu (1989). Olsen-P fraction that was extracted by NaHCO3 (Olsen and Sommers 1982) was regarded as P-availability index. Also, Total-P by perchloric acid (HClO4) digestion (Sparks; 1996) and organic P were determined.. All of the extraction procedures were performed in duplicate and the amounts of P were colorimetrically measured in the supernatants by the ascorbic acid method of Murphy and Riley (1962).The relationships between forms of P and some of the soil properties were established using correlation method.
Results and Discussion: The chemical data of the soils showed that soils were calcareous with CCE range between 9.94 to 74.27 % ( average 51.10%) and pH range between 7.02 to 8.36 (average 7.85). Also, the amounts of CEC were between 5.35 to 29.39 cmol (+) kg-1(average 16.68 cmol (+) kg-1). The results showed a wide range in content of Phosphorus fractions. The amount of total Phosphate ranged from 301.87 to 1458.68 mg kg-1 with an average of 626.63 mg kg-1 . Calcium Phosphate ranged from 147.83 to 666.90 mg kg-1 with an average of 324.79 mg kg-1, that comprised 85 and 52 percent of inorganic and total Phosphorus, respectively. The amount of Fe-P ranged from 0.38 to 59.18 mg kg-1 with an average of 7.56 mg kg-1 that comprised 13.64 and 8.34 percent of inorganic and total Phosphorus, respectively. Also, the amount of Al-P ranged from 20.49 to 123.09 mg kg-1 with an average of 52.28 mg kg-1that comprised 1.97 and 1.21 percent of inorganic and total Phosphorus, respectively. The results of correlation study showed that available Phosphorus was significantly correlated with Ca2-P, Ca8-P, Al-P, Ca10-P, and Pt (total phosphorus). So, in calcareous soils, awareness of soil properties and phosphorus fractions and their relationships are important for evaluation of phosphorous status in soil and understanding of soil chemistry that influence soil fertility.
Conclusion: The relative abundance of inorganic P forms were in order of Ca10 – P > Ca8- P > Al –P> Ca2-P> Fe-P. Among the inorganic P fractions, Ca-P had the highest value and varied from 147.83 to 666.90 mg kg-1, which accounted for 53 percent of the sum of P fractions, occurred in H2SO4 extractable P fraction, which is attributed to primary Ca–P minerals, indicating their weak weathering nature. Also, correlation study showed that available Phosphorus was significantly correlated with Ca2-P, Ca8-P, Al-P, Ca10-P, and Pt. This result indicate that these fractions probably can be used by plant.

کلیدواژه‌ها [English]

  • Calcareous soils
  • Sequential Extraction
  • Calcium Phosphate
1- Bakheit-Said M., and Dakermanji H. 1993. Phosphate adsorption and desorption by calcareous soils of Syria. Communications in Soil Science and Plant Analysis. 24: 197-210.
2- Change S.C., and M. L. Jackson. 1957. Fractionation of soil phosphorus. Soil Science. 84:133-144.
3- Dehghani R., Shariatmadari H., Khademi H. 2003. Forms of phosphorus in soil and changes in land use in the region of two rows. 9th. Soil Science. Congr. of Iran. p. 601-604. ((In Persian).).
4- Fife C. V. 1959. An evaluation of ammonium fluoride as a selective extraction for aluminium-bound soil phosphate. I. Preliminary studies on nonsoil systems. Soil Science Society of America Journal. 87:12-21.
5- Gee G. W., and Bauder J. W. 1986. Particle of size analysis, hydrometer method. p. 404-408. In A. Klute et al. (ed.) Methods of Soil Analysis, Part 1, American. Society. Agronomy., Madison, WI.
6- Ghorbanli M., Babalar M .2003. Mineral Nutrition of Plants, 1st, Tehran Teacher TrainingUniversity Pub, Tehran, 356p. (In Persian).
7- Hailin Z., and Kovar J.L. 2000. Phosphorus fractionation. P 50-59, In: Methodsof P Analysis. (ed.). USDA /ARS. Ames, IA.
8- Hedley M.J., Stewart J.W.B., and Chuhan B.S. 1982. Changes in inorganic and organic soil phosphorous fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal. 46: 970-976
9- Holford I.C.R., and Mattingly G.E.G. 1975. The high–and low-energy phosphate adsorption surfaces in calcareous soils. Journal of Soil Science. 26: 407-417.
10- Jiang B and Gu.Y. 1989. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertility Research. 20: 159-165.
11- Kuo S. 1996. Total organic phosphorus. P 869-919, In: Methods of Soil Analysis. Sparks, D.L. (ed.), Part 3. Chemical Methods. Soil Science Society of America. Madison, WI.
12- Lopez-Pinerio A., and Garcia-Navarro A. 2001. Phosphate fractions and availability in vertisols of South-Western Spain. Soil Science Society of America Journal. 166: 548-556.
13- Mahmoud Soltani Sh., and Samadi A. 2003. Phosphorus fractionation of some calcareous soils in Fars province and their relationships with some soil properties. Journal of Agricultural Sciences and Natural Resources. 3: 7. 119-128.
14- Malakouti M.F and Gheibi M. N.2000.“Determining the critical limit for nutrients effective upon the soil, plants and fruits," Education and Human Resources Equipment Deputy, Karaj, Iran. (In Persian).
15- Mostashari M.,. Muazardalan M., Karimian N.A., Hosseini H. M., and Rezai. H. 2009. Phosphorus fractions of selected calcareous soils of Qazvin province and their relationships with soil characteristics. American-Eurasian Journal of. Agriculture. & Environment. Science. 3(4):547-553. (In Persian).
16- Murphy J., Riley J. P. (1962): A modified single solution method fordetermination of phosphate in natural waters. Analytica Chimica Acta 27, 31–36.
17- Nelson D. W., and Sommers L. E. 1996. Total carbon, organic carbon and organic matter. P. 961-1010. In D. L. Sparks et al. (ed.) Methods of Soil Analysis, Part 3, 3nd ed., American. Society. Agronomy., Madison, WI.
18- Olsen S. R., Cole C. V., Watanable F. S. and Dean L. A. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular No. 939. U.S. Government Printing Office, Washington, DC.
19- Olsen S.R., and Sommer L.E. 1982. Phophorus. In Methods of soil Analysis: Chemical and microbiological Properties, part2. 2nd Ed. Agronomy. Monogrph. No. 9. A. Klute (ed). ASA and Soil Science. Society of America., Madison WI, pages 403-430.
20- Ryan J., Curtin D., and Cheema M.A. 1985. Significance of iron oxides and calcium carbonate particle size in phosphate sorption by calcareous soils. Soil Science. Society of America. Journal.48: 74-76.
21- Salardini A. 1995. Soil fertility. Tehran University Pub. Iran, 441p. (In Persian).
22- Saleque M.A., Nahar U.A., Islam A., Pathan A.B.M.U., and Hossain T.M.S. 2004. Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils. Soil Science. Society of America. Journal. 68: 1635-1644.
23- Samadi A., and Gilkes R. J. 1998. Forms of phosphorus in virgin and fertilized calcareous soils of Western Australia. Austral. Journal of Soil Research. 36: 585-601.
24- Samadi A., and Gilkes R.J. 1999. Phosphorus transformations and their relationships with calcareous soil properties of south Western Australia. Soil Science. Society of America. Journal. 63: 809-815.
25- Samavati M., and Hossainpoor A. 2006.Phosphorus fractionation of some soils in Hamedan and their relationships with some soil properties. Soil and water Journal. 20: 2. 246-259. (In Persian).
26- Samavati M., and Hosseinpur A. 2011. Phosphorus fractions and availability in some calcareous soils in Hamedan province. Journal of Agricultural Sciences and Natural Resources. 15: 55. 127-138. (In Persian).
27- Samrit P. C. Jongruk S. Charier, and Nipon T. 2002. Changes of some chemical properties, inorganic phosphate fractions and available P in some paddy Soils in Thailand. Pp. 14-21. 17th WCSS, Aug., Bangkok, Thailand.
28- Sharply A.N., and Smith S.J. 1985. Fractionation of inorganic phosphorus in virgin and cultivated soils. Soil Science. Society of America. Journal. 49: 127-130.
29- Sommers, L. E., and D. W. Nelson. 1997. Determination of total phosphorus in soils: A rapid percholoric acid digestion procedure. Soil Science. Society of America. Proceedings. 36: 902 – 904.
30- Sumner M. E., and Miller W. P. 1996. Cation exchange capacity and exchange coefficient. PP: 1201-1230. In: D. L. Sparks. (Ed.), Methods of Soil Analysis. Part 3, Chemical Methods, Soil Science. Society of America. Madison, WI.
31- TekChand A., and Tomar N.K. 1993. Effect of soil properties with phosphate fixation in some alkaline calcareous soils. J. Indian. Society. Soil Science. 41: 56-61.
32- Thomas G. W. 1996. Soil pH and soil acidity. P. 475-490. In D. L. Sparks et al. (ed.) Methods of Soil Analysis, Part 3, 3nd ed. American. Society. Agronomy., Madison, WI.
33- Tyler G. 2002. Phosphorus fractions in grassland soils. Chemosphere, 48: 343-349.
CAPTCHA Image