پیش بینی و تحلیل تغییرات بارش های ماهانه ی شهرستان اردبیل با استفاده از مدل های آریما، اتورگرسیو و وینترز

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه محقق اردبیلی

چکیده

بارش جزء تغییرپذیرترین عناصر اقلیمی با زمان و مکان است. نوسانات شدید بارندگی در مناطق مختلف جغرافیایی، لزوم بررسی این عنصر اقلیمی و ارائه ی مدل مناسب برای پیش بینی مقادیر آتی آن برای انجام برنامه ریزی های ناحیه ای را آشکار می کند. شهرستان اردبیل، همواره با نوسانات بارندگی و کمبود آب مواجه بوده است لذا در پژوهش حاضر، با استفاده از مدل های پیش بینی اتورگرسیو مرتبه ی 2، وینترز و آریما، بارش-های ماهانه ی ایستگاه سینوپتیک اردبیل به عنوان نماینده ی شهرستان اردبیل برای یک دوره ی 31 ساله (2007-1977) مورد تحلیل و بررسی قرار گرفت. برای بررسی وجود یا عدم وجود تغییرات معنادار میانگین بارش ایستگاه سینوپتیک اردبیل، بارش این ایستگاه به دو دوره ی 1977 تا 1993 و 1994 تا 2010 تقسیم و برای آزمون اختلاف بارش دو دوره ی فوق، از آماره ی t استفاده گردید. نتایج حاصل از بررسی پارامتر بارش با استفاده از مدل های مذکور، سیر نزولی پارامتر مجموع بارش ماهانه ی ایستگاه مورد مطالعه را طی سال های آتی نشان داد. نتایج حاصل از تحلیل و مدل سازی مجموع بارش ماهانه ی ایستگاه سینوپتیک اردبیل با استفاده از مدل های مذکور نشان می دهد که مدل آریما با داشتن پایین ترین مقدار میانگین قدر مطلق درصد خطاها و بالاترین مقدار ضریب تعیین، بهتر از مدل های اتورگرسیو مرتبه ی 2، وینترز می باشد. شاخص های جذر میانگین مجذور خطاها، معیار آکائیک و میانگین قدر مطلق انحرافات مبیّن این بود که الگوی SARIMA(1,1,1)(2,0,1)12، کمترین مقدار عددی معیارهای مذکور را دارا می باشد لذا می تواند به عنوان الگوی مناسبی برای پیش بینی مقادیر بارش های ماهانه ی ایستگاه سینوپتیک اردبیل لحاظ گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting and Analysis of Monthly Rainfalls in Ardabil Province by Arima, Autoregrressive, and Winters Models

نویسندگان [English]

  • B. Salahi
  • R. Maleki Meresht
university of Mohaghegh Ardabili
چکیده [English]

Introduction: Rainfall has the highest variability at time and place scale. Rainfall fluctuation in different geographical areas reveals the necessity of investigating this climate element and suitable models to forecast the rate of precipitation for regional planning. Ardabil province has always faced rainfall fluctuations and shortage of water supply. Precipitation is one of the most important features of the environment. The amount of precipitation over time and in different places is subject to large fluctuations which may be periodical. Studies show that, due to the certain complexities of rainfall, the models which used to predict future values will also need greater accuracy and less error. Among the forecasting models, Arima has more applications and it has replaced with other models.
Materials and Methods: In this research, through order 2 Autoregrressive, Winters, and Arima models, monthly rainfalls of Ardabil synoptic station (representing Ardabil province) for a 31-year period (1977-2007) were investigated. To assess the presence or absence of significant changes in mean precipitation of Ardabil synoptic station, rainfall of this station was divided into two periods: 1977-1993 and 1994-2010. T-test was used to statistically examine the difference between the two periods. After adjusting the data, descriptive statistics were applied. In order to model the total monthly precipitation of Ardabil synoptic station, Winters, Autoregressive, and Arima models were used. Among different models, the best options were chosen to predict the time series including the mean absolute deviation (MAD), the mean squared errors (MSE), root mean square errors (RMSE) and mean absolute percentage errors (MAPE). In order to select the best model among the available options under investigation, the predicted value of the deviation of the actual value was utilized for the months of 2006-2010.
Results and Discussion: Statistical characteristics of the total monthly precipitation in Ardabil synoptic station indicates that in May, the highest and in August, the lowest monthly total rainfall accounted in this station. Standard deviation of rainfall reached to the lowest level in August and its peak in November. Coefficients of skewness and kurtosis of total rainfall in all seasons, indicates a lack of compliance with normal distribution. From the view of the range of total monthly rainfall, October and August have highest and the lowest tolerance in these parameters, respectively. The results showed that the percentage of the mean absolute error for Arima, Winters and Autoregressive models was 61.82, 148.39 and 81.54 respectively and its R square came to be 88.28, 61.07 and 85.12 respectively. The comparison of the parameters is an indication of the fact that Arima has the highest R square and the lowest mean absolute error of 88.28 and 61.82 respectively than Winters and Autoregressive models. The presence or absence of significant changes in mean precipitation during 1977-1993 and 2010-1994 in Ardabil synoptic station shows that the difference of rainfall is not significant at the 5% error level from statistical point of view. The comparison between the monthly mean rainfall of Ardabil synoptic station in 1994-2010 and 1977-1993 indicates that rainfall has somewhat decreased in the former in recent years. Considering the low average monthly rainfall of Ardabil synoptic station in 1994-2010 compared to 1977-1993 (21.98 versus 26.11 mm), although no statistically significant difference was found in the average rainfall, low rainfall in this station would not be unexpected in the coming years. The comparison of predicted and actual values from 2011 to 2013 in Ardabil synoptic station showed that fitting real data with expected data was relatively acceptable. The observed differences between the actual and predicted values can be related to the influence of rainfalls and many local and dynamical factors of this area. Therefore, it is necessary for climatologists to better explain and predict phenomena besides statistical models and pay more attention to general circulation models (GCM) under different climate conditions.
Conclusion: Results of rainfall investigation by order 2 Autoregrressive, Winters, and Arima models showed a descending trend in monthly rainfalls in the coming years across the study location. The results of modeling and analysis of monthly rainfalls in Ardabil synoptic station showed that among these models, Arima was better than the other two because it enjoyed the lowest MAPE and the highest R2. AIC, RMSE and MAD scales of different patterns were calculated and finally, SARIMA(1,1,1)(2,0,1)12 pattern having the lowest AIC, RMSE and MAD was selected as the most appropriate pattern for monthly rainfall forecasting in Ardabil synoptic station.

کلیدواژه‌ها [English]

  • Descriptive statistics
  • Modeling, Rainfall fluctuations
  • Statistical tests
  • Validation
1- Abdul-Aziz A.R., Anokye M., Kwame A., Munyakazi A, L. 2013. Modeling and forecasting rainfall pattern in Ghana as a seasonal ARIMA process: the case of Ashanti region. International Journal of Humanities and Social Science, 3: 224-233.
2- Arastu B. 2000. Evaluate and prediction the climatic drought using time series analysis, case study (selected stations in Semnan province). P. 1-10. The first national conference examining ways of coping with water scarcity and droughts. Kerman University, Kerman. (In Persian)
3- Asadi A., Heydari A. 2011. Analysis of changes in temperature and precipitation series of Shiraz during the period 1951-2005. Journal of Geography and Environmental Planning, 41: 137-152. (In Persian with English abstract)
4- Azar A., Momeni M. 2005. Statistics and Its Application in Management. Samt Press.
5- Babazadeh H., Shams-nia S.A., Boustani F., Nourouzi-Aghdam E., Khodadady-Dehkordy D. 2012. The study of drought, wet climate and predict rainfall and temperature parameters of Shiraz region using stochastic methods, Journal of Geography and Planning (Department of Environmental Sciences and Architecture). 41: 23-47. (In Persian with English abstract)
6- Esmaeilian M. 2006. Comprehensive Guide to SPSS 14. Cultural and Artistic Institute of Dibagaran, Second Edition, Tehran.
7- Farshadfar E. 2002. Principles and statistical methods, Taghebostan Press, First Edition, Kermanshah.
8- Firuzi F., Negaresh H., Khosravi M. 2012. Modeling, forecasting and trend of precipitation in selected stations in the Fars province. Journal of Regional Planning, 7: 77-91.
9- Gong Sh., Gao Y., Shi H., Zhao G. 2013. A practical MGA-ARIMA model for forecasting real-time dynamic rain-induced attenuation. Radio Science, 48: 208–225.
10- Haji-Baiglu M., Ghezel-Suflu A., Alimirzaei H. 2013. Evaluate and predict the average monthly precipitation using SARIMA technique (case study: meteorological stations of Bojnoord Baba Aman). Science and Irrigation Engineering (Journal of Agriculture), 3: 41-54. (In Persian with English abstract)
11- Han P., Wang P., Tian M., Zhang Sh., Liu J., Zhu D. 2013. Application of the ARIMA models in drought forecasting using the standardized precipitation index, IFIP Advances in Information and Communication Technology, 392: 352-358.
12- Jahanbakhsh-Asl S., Sary-Sarraf B., Fakheri-Fard A., Mir-Mousavi S. 2006. Linear transfer function model parameters used in the study of climate parameters, case study: Tabriz Station. Journal of Isfahan University, 20: 75-92. (In Persian with English abstract)
13- Kaushik I., Singh S.M. 2008. Seasonal ARIMA model for forecasting of monthly rainfall and temperature. Journal of Environmental Research and Development, 2: 506-514.
14- Khorshiddust A., Ghavidel-Rahimi Y. 2004. Study of precipitation fluctuation, predict and determine the wet and dry seasons of winter in Azarbayjan-Sharghy province. Journal of Geographical Research, 19: 25-36. (In Persian with English abstract)
15- Mahalakshmi N., Umarani P.R., Samuel Selvaraj R. 2014. Forecasting the Tamil Nadu rainfall using hybrid ARIMA–ANN model. International Journal of Recent Scientific Research, 5: 566-569.
16- Mahsin M.d., Yesmin Y., Begum M. 2012. Modeling rainfall in Dhaka division of bangladesh using time series analysis. Journal of Mathematical Modeling and Application, 5: 67-73.
17- Meher J., Jha R. 2013. Time-series analysis of monthly rainfall data for the Mahanadi River Basin, India. Sciences in Cold and Arid Regions, 5: 0073–0084.
18- Narayanan P., Basistha A., Sarkar S., Kamna S. 2013. Trend analysis and ARIMA modelling of pre-monsoon rainfall data for western India. Comptes Rendus Geoscience, 345:22-27.
19- Radmanesh F., Akhundali A., Gholabi M. 2011. Investigation and forecast of meteorological drought in Abadan station using time series. The First National Conference on Meteorology and Water Management Agriculture, Tehran, Tehran University, Department of Irrigation Engineering. (In Persian)
20- Roushani R. 2011. Analyze and predict of changes in the Nissan rainfall of Tabriz using Man-Kendall statistics and ARIMA model. National Conference on Climate Change and its Impact on Agriculture and the Environment. (In Persian)
21- Sary-Sarraf B., Jameei J. 2003. Analysis and assessment of drought in the West of Iran, Journal of Geographical Research, 71: 151-173. (In Persian with English abstract)
22- Sridhar M., Padma Raj K., Srinivasa Rao, Ch., Venkata Ratnam D. 2013. Prediction and analysis of rain attenuation using ARIMA model at low latitude tropical station. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2: 3071-3076.
23- Suhartono S., Faulina R., Lusia D.A., Otok B.W. 2012. Ensemble method based on ANFIS-ARIMA for rainfall prediction. Statistics in Science, Business, and Engineering (ICSSBE), 2012 International Conference, Langkawi.
24- Tirgar-Fakheri F. 2012. Analysis and forecasting of the annual rainfall of Kermanshah synoptic station using the Mann-Kendall and ARIMA models. The First National Conference on Strategies for Achieving Sustainable Development, Tehran. (In Persian)
25- Zahedi M., Sary-Sarraf B., Jameei J. 2003. Modeling of rainfall in Urmia and Tabriz stations. Journal of Geography and Regional Development, 7: 1-16. (In Persian with English abstract)
26- Zakaria S., Al-Ansari N., Knutsson S., Al-Badrany T. 2012. ARIMA models for weekly rainfall in the semi-arid Sinjar District at Iraq. Journal of Earth Sciences and Geotechnical Engineering, 2: 25-55.