مدل‌سازی انتقال نانوذرات مگنتیت اصلاح شده با سدیم دودسیل سولفات در یک خاک شنی اشباع

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 دانشگاه شیراز

3 دانشگاه فسا

چکیده

نانوذرات از جنبه های مختلف پالایش زیست محیطی مانند تخریب ترکیبات آلی و آفت کش ها و جذب فلزات سنگین و آنیون های غیر آلی مورد-توجه واقع شده اند. هدف این پژوهش، مطالعه کمی انتقال نانوذرات مگنتیت در ستون های شن، تحت شرایط رطوبتی اشباع بود. بدین منظور، منحنی رخنه نانوذرات مگنتیت اصلاح شده باسدیم دو دوسیل سولفات5 (SDS) و کلراید در شرایط اشباع اندازه گیری شد و تأثیر غلظت نانوذرات (1/0 و 5/0 گرم در لیتر) و اثربار آبی (2 و 10 سانتی متر) بر انتقال نانوذرات بررسی گردید. برای پیش بینی انتقال نانوذرات در خاک از مدل های جذب- واجذب سینتیک تک مکانی و دومکانی برنامه HYDRUS-1D استفاده شدو برای تعیین دقت مدل ها از آماره های تعیین کارایی مدل(E)، ریشه میانگین مربعات خطا (RMSE)، میانگین هندسی نسبت خطا (GMER) و انحراف معیار هندسی نسبت خطا (GSDER) استفاده گردید. نتایج نشان داد در هر دو مدل در تمام مکان ها جذب سریع و واجذب کند است که می توان این مکان های سینتیک جذب را مربوط به کانی های با بار موافق جذب دانست. بنابراین با توجه به رفتار مشابه جذب- واجذب در دو مکان مربوط به مدل سینتیک دومکانی، می توان گفت مدل تک مکانی به تنهایی قادر به برآورد مطلوب منحنی های رخنه نانوذرات در خاک شنی مورد مطالعه می باشد. کارایی مدل تک مکانی از 761/0 تا 851/0 و مدل دومکانی از 760/0 تا 846/0 متغیر بود که نشان می دهد هر دو مدل برآورد خوبی از منحنی رخنه نانوذرات دارند. با توجه به شکل لگاریتمی منحنی رخنه انتقال نانوذرات در خاک شنی، هر دو مدل برآوردی خوب از کلیه دامنه منحنی رخنه نانوذرات از جمله دنباله منحنی رخنه داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Transport Modeling of Modified Magnetite Nanoparticles with Sodium Dodecyl Sulfate in a Saturated Sandy Soil

نویسندگان [English]

  • Ahmad Farrokhian Firouzi 1
  • Hosein Hamidifar 2
  • Mohammad Javad Amiri 3
  • Mehdi Bahrami 3
1 Shahid Chamran University
2 Shiraz University
3 Fasa University
چکیده [English]

Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats of nanoparticle releases into the soil–water environment, a number of studies have been carried out to investigate the transport, retention and deposition of nanoparticles in saturated porous media. Many of these studies are based on measurements of transport in columns packed with idealized porous media consisting of spherical glass beads or sand. The nanoparticles are usually introduced into the column and breakthrough curve concentrations are measured at the column outlet. To examine the effect of various parameters on the transport of nanoparticles in porous medium, for convenience, all the parameters considered the same in the experiments, and only one parameter in the experiments is changed and investigated.
Materials and Methods: The objective of this research is quantitative study of modified magnetite nanoparticles transport in saturated sand-repacked columns. The modified magnetite nanoparticles with Sodium dodecyl sulfate were synthesized following the protocol described by Si et al. (2004). The experimental setup included a suspension reservoir, Teflon tubing, a HPLC pump, and a glass column (2.5 cm i.d. and 20 cm height). Therefore, breakthrough curves of modified magnetite nanoparticles with Sodium dodecyl sulfate and chloride were determined under saturated conditions and influence of nanoparticles concentration (0.1 and 0.5 g.L-1) and pore velocity (pressure head of 2 and 10 cm) on nanoparticles transport were investigated. For each medium bed, the background solution were first pumped through the column in the up-flow mode to obtain a steady flow state. Then, a tracer test was conducted by introducing CaCl2 solution into the column. The response curve was followed by analyzing the concentration history of Cl-1 in the effluent. Then, the influent was switched back to the background solution to thoroughly elute the tracer. Following the tracer test, a modified magnetite nanoparticles with sodium dodecyl sulfate was introduced into the column and the nanoparticle breakthrough curves were obtained by measuring the concentration history of total Fe in the effluent. Total iron concentration was analyzed with a flame atomic-absorption spectrophotometer.
One site and two site kinetic attachment-detachment models in HYDRUS-1D software were used to predict the nanoparticles transport. Also parameters of model efficiency coefficient (E), root mean square error (RMSE), geometric mean error ratio (GMER), and geometric standard deviation of error ratio (GSDER) were used to determine the accuracy of the models.
Results and Discussion: SEM measurements demonstrated that the particle size of nanoparticles was about 40-60 nm. The hydrodynamic dispersion coefficient (D) for each medium was obtained by fitting the classic 1-D convection–dispersion equation (CDE) to the experimental breakthrough data using the CXTFIT code (STANMOD software, USDA). The relative concentration of nanoparticles in comparison with chloride in the collected effluent from soil columns were much lower indicating a strong retention of nanoparticles in studied porous media, thereby attachment, deposition and possibly straining of nanoparticles.
Modeling results showed that in all sites of both models (one site and two-site kinetic attachment-detachment models), attachment was rapid and detachment was slow. These attachment kinetic sites may be because of consistent charges of minerals with attachment. Therefore, considering to same attachment-detachment behavior in two sites of two-site kinetic model, it is concluded that the one site kinetic model had eligible estimation of nanoparticles breakthrough curve in the studied sandy soil columns lonely. Efficiency of one site and two-site models varied from 0.761 to 0.851 and 0.760 to 0.846 respectively that indicated both models had good estimation of nanoparticles transport in the sandy soil. Also, logarithmic form of nanoparticles breakthrough curve showed that both models had good estimation of all ranges of breakthrough curve containing its tail.
Conclusion: Investigation of transport modeling of modified magnetite nanoparticles with Sodium dodecyl sulfate in a saturated sandy soil showed that decreasing the nanoparticles concentration would enhanced the mobility of modified magnetite nanoparticles, but increasing of pressure head had no effect on nanoparticles mobility. The results of models evaluation showed that both one site and two-site models had eligible estimation of nanoparticles transport in the studied sandy soil columns.

کلیدواژه‌ها [English]

  • Attachment
  • Detachment
  • HYDRUS-1D
  • Kinetic
  • Saturated flow
1- Alibeigi S., and Vaezi M. 2008. Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+: Fe3+. Journal of Chemistry Engineering Technology, 31(11):1591–1596.
2- Ben-Moshe T., Ishai D., and Brian B. 2010. Transport of metal oxide nanoparticles in saturated porous media. Journal of Chemosphere, 81: 387–393.
3- Chen L., Wang T., and Tong J. 2011. Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. Trends in Analytical Chemistry. 30 (7): 1095-1108.
4- Chen Y., and Li F. 2010. Kinetic study on removal of copper )II( using goethite and hematite nano-photocatalysts. Journal of Coloid and Interface Science. 347:277–281.
5- Fang J., Shan X., Wen B., Lin J., and Owens G. 2009. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Journal of Environmental Pollution, 157: 1101–1109.
6- Fuerstenau D.W. 1970. Interfacial processes in mineral/water systems. Pure and Applied Chemistry: 135-164.
7- Gaboriaud F., and Ehrhardt J.J. 2003. Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles: An experimental and modeling study. GeochimicaetCosmochimicaActa, 67 (5): 967-983.
8- Grieger K.D., Fjordbøgea A., Hartmanna B., Erikssona K., Bjerga L., and Bauna A. 2010. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?.Journal of Contaminant Hydrology, 118: 165-183.
9- Guzman K.A.D., Finnegan M.P., and Banfield J.F. 2006. Influence of surface potential onaggregation and transport of titania nanoparticles. Journal of Environmental Science andTechnology, 40: 7688–7693.
10- Hassanizadeh S.M., and Schijven J.F. 2000. Use of bacteriophages as tracers for the study of removal of viruses. In: Dassargues, A. (Ed.), Tracers and Modeling in Hydrogeology. Proceedings of TRAM, held in Liege. Journal of Belgium, 23: 167–174.
11- Huang S.H., Liao M.H., and Chen D.H. 2006. Fast and efficient recovery of lipase by polyacrylic acid-coated magnetic nano-adsorbent with high activity retention. Journal of Purification Technology, 51: 113–117.
12- Liu R., and Zhao D. 2007. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Journal of Chemosphere, 68 :1867–1876.
13- Marouf R., Marouf-KhelifaKh., Schott J., and Khelifa A. 2009. Zeta potential study of thermally treated dolomite samples in electrolyte solutions. J. Microporous and Mesoporous Materials: 122: 99-104.
14- Marquardt D.W. 1963. An algorithm for least-squares estimation of nonlinears. SIAM. Journal of Application Material, 11: 431–441.
15- Ozmen M., Can K., Arslan G., Tor A., Cengeloglu Y., and Ersoz M. 2010. Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Journal of Desalination, 254: 162–169.
16- Pokrovsky O.S., Schott J., and Thomas F. 1999. Dolomite surface speciation and reactivity in aquatic systems. J. Geochimica et CosmochimicaActa, 63 (19-20) : 3133-3143.
17- Reible D., Lampert D., Constant D., Mutch J., and Zhu Y. 2006. Active capping demonstration in the Anacostia River. Journal of Remediation, 17: 39–53.
18- Schijven J.F.; Hoogenboezem W.; Hassanizadeh S.M. and Peters J.H. 1999. Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at castricum, The Netherlands. Journal of Water Research, 35: 1101–1111.
19- Si S., Kotal A., and Mandal T.K. 2004. Size-controlled synthesis ofmagnetite nanoparticles in the presence of polyelectrolytes. Jornal of Chemistry Material, 16: 3489−3496.
20- Simunek J., Sejna M., Saito H., Sakai M., and van Genuchten M.Th. 2008. The HYDRUS-1D software package for simulating the one-dimentional movement of water, heat, and multiple solutes in variably-saturated media, Version 4.0x Hydrus Series 3, Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA.
21- Toride N., Leij F.J., and van Genuchten M.Th. 1999. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments Version 2.1 Research Report, vol. 137. U.S. Salinity Laboratory, Riverside, CA.
22- Xu Y., Liu R., and Zhao D. 2009. Reducing leachability and bioaccessibility of toxic metals in soils, sediments, and solid /hazardous wastes using stabilized nanoparticles. Journal of Nanotechnology Applications for Clean Water: 365–374.
23- Yang C.C., Tua H., and Hunga C. 2007. Stability of nanoiron slurries and their transport in the subsurface environment. Separation and Purification Technology, 58: 166-172.
24- Zhang W.X. 2003. Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5: 323–332.
25- Zhang Z., Li M., Chen W., Zhu Sh., Liu N., and Zhu L. 2010.Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Journal of Environmental Pollution, 158: 514–519.