مقایسه دقت مدل‌های ون‌گنوختن و بروکز و کوری در شبیه‌سازی حرکت آب در بقایای لاشبرگ‌های کف جنگل توسط کد HydroGeoSphere

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه محقق اردبیلی

چکیده

در یک حوضه آبخیز جنگلی، بقایای کف جنگل شامل لاشبرگ ها بوده و نقش محیط متخلخل قبل از خاک معدنی را بازی می کند. خصوصیات هیدرولیکی بقایای کف جنگل تا حدودی ناشناخته بوده و نمی توان با روش های متداول برای خاک، آن‌ها را اندازه گیری نمود. در این پژوهش برای شبیه‌سازی حرکت آب درلاشبرگ ها از مدل های منحنی مشخصه آبِ خاک و هدایت هیدرولیکی غیر اشباع ون گنوختن و بروکز و کوری همراه با کدHydroGeoSphere استفاده گردید. نمونه برداری از لاشبرگ ها در سه نوع لاشبرگ پهن برگ، سوزنی برگ و مخلوط، در جنگل های غرب استان گیلان و به صورت دست نخورده انجام گرفت. ابتدا با استفاده از روش معکوس، ضرایب مدل های ون گنوختن و بروکزوکوری برآورد شد. سپس با به کارگیری مدل های فوق الذکر، حرکت آب در لاشبرگ ها توسط کد HydroGeoSphere شبیه سازی گردید. مقادیر معیار های آماری شامل ریشه میانگین مربعات خطا ( )، میانگین خطای مطلق ( )، شاخص مطابقت اصلاح شده ( ) و ضریب کارآیی اصلاح شده ( ) به منظور مقایسه‌ی دقت مدل های ون گنوختن و بروکز و کوری همراه با کد HydroGeoSpherدر شبیه سازی حرکت آب در لاشبرگ ها مورد استفاده قرار گرفتند. نتایج تجزیه آماری نشان داد کمترین حساسیت روش معکوس به پارامتر رطوبت باقیمانده در لاشبرگ ها می باشد. همچنین نتایج معیارهای آماری نشان داد، مدل ون گنوختن با ، ، و به ترتیب برابر با 2753/0، 1659/0، 8895/0 و 7726/0 نسبت به مدل بروکز و کوری با ، ، و به ترتیب 3400/0، 2228/0، 8378/0 و 6984/0، همراه با کد HydroGeoSphereبرای شبیه-سازی حرکت آب در لاشبرگ ها کارآمدتر می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Accuracy of van Genuchten and Brooks & Corey models for Simulating Water Flow in Forest Floor using HydroGeoSphere Code

نویسندگان [English]

  • Majid Homapoor Goorabjiri
  • Ali Rasoulzadeh
University of Mohaghegh Ardabili
چکیده [English]

Introduction: The forest residuals play an important role in runoff rate, soil erosion, and soil infiltration capacity of protecting mineral (surface) soils from the direct impact of raindrops. By intercepting rainfall, the forest residuals serve as a temporary reservoir and allows more time for infiltration into the mineral soil beneath (Kosugi et al., 2001). Hydraulic properties of forest residuals were unknown to some extent and could not be measured with similar methods used for mineral soil. In recent years, several studies on the forest floor have been published (Kosugi et al.,2001; Schaap et al.,1997). The objective of this study was the comparison of accuracy of van Genuchten and Brooks & Corey models for simulating water flow in forest floor using the HydroGeoSphere Code of broad-leaved, needle-leaved and mixed-stand floor. First, saturated hydraulic conductivity, porosity, and water retention curve parameters (van Genuchten equation) which were unknown parameters in the forest floor were estimated by inverse method. Second, estimated hydraulic properties were compared statistically.
Materials and methods: Forest floor samples were collected from broad-leaved (beech and others), needle-leaved (coniferous) and mixed-stand (coniferous and broad-leaved) trees in Guilan province, Iran. In the laboratory, a plastic wire-netting, composed of 0.3 mm diameter was attached to the bottom of each core sample to support forest floor. Then the samples were piled up to make long columns of 18.1 cm in inner diameter and about 40.88 cm in height. Artificial rainfall experiments were conducted on top of the columns and free drainage from the bottom of columns was measured in the laboratory. Applied rainfall intensities were randomly changed in the range of 0-0.01 cm/sec. Drainage at the bottom of the tray was collected and measured using an electronic balance. First, a constant intense rain was applied to reach to steady state condition as a constant discharge rate from the bottom was established in order to accurately define the initial condition required for the numerical simulation of unsaturated water flow. After reaching to state steady experiment, transient condition was carried out. In transient condition, the random rainfall experiment was conducted and the transient discharge rate from the bottom was continuously monitored. In this study, we developed an inverse method for estimating parameters based on the Levenberg-Marquardt (Marquardt 1963) minimization algorithm in the C++ programming language along with HydroGeoSphere (Therrien et al., 2008) as a forward model. The model was used to address two specific issues. First, it was used to estimate the hydraulic conductivity, porosity, and soil water retention curve parameters (van Genuchten and Brooks & Cory equations) which were unknown parameters in the unsaturated porous media. Second the water flow in the forest floor was simulated using van Genuchten and Brooks & Cory equations along with HydroGeoSphere code.
Results and discussion: The results of calibration periods showed that the estimated free drainage using the optimized parameters exhibits a good fitting with the observed free drainage for all treatments. The good agreement between simulated and observed free drainage in the validation period for all the forest floor samples illustrated that the estimated hydraulic properties efficiently characterized the unsaturated water flow in forest floor. So one could conclude that Richards' equation along with Brooks & Cory and van Genuchten's retention functions can successfully describe the unsaturated water flow in the forest floors.
Estimated hydraulic properties succeeded to reproduce the observed free drainage in the transient condition, indicating van Genuchten functions along with Richards' equation can be used to simulate water flow in the entire forest floors. The results of the study showed that the forest floor samples have large saturated hydraulic conductivity values like light soils. The results showed that inverse method was not sensitive to residual water content. Also the results showed that HydroGeoSphere code along with van Genuchten's retention function with 0.2753 mimics free drainage better than Brooks & Corey's retention function with 0.3400 but there is no significant difference (P

کلیدواژه‌ها [English]

  • Hydraulic models
  • Inverse method
  • porous media
  • Richards' equation
1- Augeard B., Assouline S., Fonty A., Kao C., and Vauclin M. 2007. Estimating hydraulic properties of rainfall induced soil surface seals from infiltration experiments and X-ray bulk density measurements. Journal of Hydrology, 341: 12-26.
2- Brooks R.H., and Corey A.J. 1964. Hydraulic properties of porous media. Hydrology. Paper 3. Colo State University, Fort Collins, Colo.
3- Catharina J.E., Nabuur,s G., Verburg P.H., and de Waal R.W. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implication for soil carbon inventories. Forest Ecology and Management, 256: 482-490.
4- Greiffenhagen A., Wessolek G., Facklam M., Renger M., and Stoffregen H. 2005. Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma, 132: 182-195.
5- Kosugi K. 1997. A new model to analyze water retention characteristics of forest soils based on soil pore radius distribution. Journal of forest research, 2(1): 1-8.
6- Kosugi K., Mori K., and Yasuda H. 2001. An inverse modeling for the characterization of unsaturated water flow in an organic forest floor. Journal of Hydrology, 246: 96-108.
7- Marquardt D.W. 1963. An algorithm for least squares estimation of non linear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-441.
8- Mclaren R.G. 2004. GRID BUILDER. A pre-processor for 2-D, Triangular element, finite-element programs. Groundwater Simulation Group, University of waterloo, Waterloo. Ontario, Canada.
9- Ogee J., and Brunet Y. 2002. A forest floor model for heat and moisture including a liter layer. Journal of Hydrology, 255: 212-233.
10- Rasoulzadeh A. 2009. Evaluation of parameters estimation using inverse method in unsaturated porous media. 10th International Agricultural Engineering Conference (IAEC), 7-10 December, Thailand.
11- Rasoulzadeh A., and Homapoor Ghoorabjiri M. 2011. Estimation of hydraulic properties of forest floor using inverse method. International Agricultural Engineering Journal, 20(2): 976-979.
12- Rasoulzadeh A., and Homapoor Ghoorabjiri M. 2013. Comparing hydraulic properties of different forest floors. Hydrological Processes. DOI:10.1002/hyp.10006.
13- Redding T. E., Hannm K.D., Quideau S.A., and Devito K.J. 2005. Particle density of Aspen, Spruce, and Pine forest floor in Alberta, Canada. Soil Science Society of America Journal, 69: 1503-1506.
14- Salazar O., Wesstrom I., and Joel A. 2008. Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model. Agricultural Water Management, 95: 1135-1143.
15- Sato Y., Kumagai T.O., Kume A., Otsuki K., and Ogawa sh. 2004. Experimental analysis of litter layers- the effect of rainfall conditions and leaf shapes. Hydrological Processes, 18: 3007-3018.
16- Schaap M.G., Bouten W., and Verstraten J.M. 1997. Forest floor water content dynamics in a Douglas fir stand. Journal of Hydrology, 201: 368-383.
17- Sharratt B.S. 1997. Thermal conductivity and water retention of a black spruce forest floor. Soil Science Society of America Journal, 162: 576-682.
18- Therrien R., Mclaren R.G., and Sudicky E.A. 2008. HydroGeoSphere: A Three Dimensional model describing fully- integrated subsurface and surface flow and solute transport. University of Waterloo, Canada. pp 349.
19- van Genuchten M.Th. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898.
CAPTCHA Image