تعیین حداکثر طول پخشیدگی املاح در کانال سهمی شکل با بستر نفوذپذیر و نفوذناپذیر

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه شهرکرد

2 مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج

3 دانشگاه صنعتی اصفهان

4 دانشگاه ناپولی فدریکو، ناپولی

چکیده

مطالعه فرآیندهای پخش و انتقال املاح در کانال‌های روباز و جویچه‌ها به دلیل نقش آنها در انتشار آلودگی‌ها ازجمله فعالیت‌های مهم در برنامه‌های مدیریتی محیط زیست و توسعه پایدار بشمار می‌آید. در این پژوهش تاثیر دبی و ضریب زبری‌های مختلف بر ضریب پخشیدگی عرضی و حداکثر طول پخشیدگی در یک کانال با مقطع سهمی در دو بستر نفوذپذیر و نفوذناپذیر بررسی شد. سه سطح دبی تقریبی 5، 10 و 15 لیتر بر ثانیه و سه سطح ضریب زبری مانینگ تقریبی 02/0، 04/0 و 06/0 در نظر گرفته شد. نمک کلرید سدیم محلول در آب به غلظت حدود 25 گرم در لیتر به عنوان ماده ردیاب در بالادست جریان تزریق شده و نیمرخ غلظت ماده ردیاب پخش شده در آب به همراه نیمرخ سرعت در 8 مقطع به فاصله 3، 4، 5، 6، 7، 8، 9 و 5/9 متری از بالادست اندازه‌گیری شد. نتایج آزمایش‌ها نشان داد که مقادیر طول پخشیدگی در سطوح مختلف ضریب زبری و دبی در بستر نفوذناپذیر 108 تا 170 متر و در بستر نفوذپذیر (مشابه جویچه) 91 تا 129 متر بدست آمده است. آزمون t-test نشان داد که اختلاف بین مقادیر طول پخشیدگی در دو بستر در سطح 1 درصد معنی‌دار است. همچنین با توجه به نتایج بدست آمده از آزمایش‌ها و مقدار دبی و زبری رایج در جویچه‌ها نشان داده شد که طول پخشیدگی برای جویچه‌ها کمتر از 70 متر خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Maximum Length of Solute Diffusion in a Parabolic Channel under Permeable and Impermeable Bed Conditions

نویسندگان [English]

  • sonia zebardast 1
  • Sayyed-Hassan Tabatabaei 1
  • Fariborz Abbasi 2
  • Manouchehr Heidarpour 3
  • Carlo Gualtieri 4
1 Shahrekord University
2 Agricultural Research, Education and Extension Organization (AREEO), Karaj
3 Isfahan University of Technology
4 University of Napoli Federico II, Napoli
چکیده [English]

Introduction: It is important to understand the processes of diffusion and transporting solute in the furrow irrigation system, because of their role in diffusion of pollutants in the environment. Movement pattern of fertilizer from the source ofplants is usually under the effect of advection and turbulent diffusion processes. Maximum solute diffusion length (SDL) is the minimum distance which materials such as a fertilizer, could uniformly spread in the whole flow cross section. The SDL depends on hydraulic properties, condition of vegetation and channel specifications. Velocity profile of furrows as a result of parabolic shape of the cross-section is different thanthe rivers and rectangular channels. The main objectives of this study were to investigate SDL in a permeable parabolic channel and evaluate the effect of different discharges and bed roughness on diffusion length in a parabolic cross-section of a furrow.
Materials and Methods: In this research, the effect of different levels of discharge and the bed roughness coefficient was studied on transverse diffusion coefficient (TDC) and the maximum solute diffusion length (SDL) in a parabolic channel with permeable and impermeable beds. The channel had a 10 m length, 0.5 m width and 0.3 m depth with a parabolic shape (similar tothefurrow irrigation system). Before entering the channel, the water flow passed the lattice filters to slow the flow. To increase the rate of flow development, the first half meter of the channel’s bed covered with gravels (maximum 5 cm thickness) and non-submerged woods. Three levels of discharge about were conducted including 5, 10 and 15 L/s as well as three levels of bed roughness coefficient including 0.2, 0.04 and 0.06. Different rates of roughness were created using various thickness of net and vegetation cover on the furrow’s bed and wall. This research was conducted in channels with beds of permeable and impermeable. In bed of with permeability, 15 holes with a diameter of 1.5 mm construct along the bed of channel. In this experiment, Sodium chloride as a tracer was injected to the water at the upstream cross section. The place of injection was 2.5 meters far from the channel inlet where flow was completely developed and water surface swings were constant. The tracer concentration in the water and the velocity profile were measured at eight cross sections along the channel including 3, 4, 5, 6, 7, 8, 9 and 9.5 m from upstream. The velocity profile was measured using Pitot tube. No specific equation is introduced to calculate the SDL. For this reason, dimensional analysis was used in this study.
Results and Discussion: The results show that, the values of TDC for different treatments ranged between 0.23 to 0.56 cm2/s in impermeable channel where it is 0.30 to 0.58 cm2/s in the permeable channel. Also the values of SDL ranged 108-170 m in impermeable channel and 91 -129 m in the permeable channel for different treatments. TDC has direct relation todischarge and bed roughness. In stationary bed roughness with increased discharge, and in stationary discharge with increasing bed roughness, TDC increased. Also In stationary bed roughness, discharge has positive and direct relation with SDL. However, in stationary discharge, roughness value has the negative relation with SDL. A statistical analysis of T-test indicated that the difference between the values of TDC and SDL in permeable and impermeable beds in the 1% level is significant. The Darcy Weisbach coefficient is the most important parameter in justifyingchanges SDL that this parameter depends on the velocity of flow, and the velocity of flow depends on discharge and shape of channel too. According to the results of the experiments and the regular values of discharge, infiltration and roughness coefficient in furrows, it was shown that the maximum solute diffusion length of furrows would be less than 70 meters.
Conclusions: The objective of this research was to develop an approach for the determination of solute diffusion in afurrow irrigation system where the cross section is parabolic. For this reason, solute diffusion length, in different bed roughness and inflow rate was studied. Eventually, an equation was developed to explain SDL in a permeable parabolic channel andthese experimental results could prove useful to predict the fertilizer transport in furrow irrigation method as well as other areas where mixing and contaminant decay is of interest.

کلیدواژه‌ها [English]

  • Diffusion process
  • furrow irrigation
  • Infiltration
  • Transverse diffusion coefficient
1- Afzalimehr H., and Anctil F. 2000. Accelerating shear velocity in gravel bed channels. Journal of Hydrolgy, (45):113-124.
2- Afzalimehr H., and Heidarpour M. 2002. Fundamentals of open channel hydrodynamics. Arkan press, p. 383. (in Persian)
3- Alizadeh H., Abbasi F., and Liaghat A. 2010. Evaluation of distribution uniformity and nitrate losses in furrow fertigation. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 14(51):45-55. (in Persian)
4- Azizpour M. 2011. Empirical Study of the transverse diffusion coefficient of pollution in channel. Ms Thesis. Department of Irrigation & Reclamation Engineering, Faculty of Agriculture, University of Tehran. (in Persian with English abstract)
5- Boxall J.B., and Guymer I. 2000. Estimating transverse mixing coefficients. Water and Maritime Engineering, (4):263-275.
6- Burguete J., Zapata N., Navarro P.G., Maïkaka M., Playan E., and Murillo J. 2009. Fertigation in Furrows and Level Furrow Systems. I: Model Description and Numerical Tests. Journal of Irrigation and Drainage Engineering, 135:401-412.
7- Buschmann M. H. 2005. New mixing-length approach for the mean velocity profile of turbulent boundary layers. Journal of Fluids Engineering, 127(2):393–396.
8- Chau K. 2000. Transverse mixing coefficient measurements in an open rectangular channel. Advances in Environmental Research, (4):287-294.
9- Ebrahimian H., Liaghat A., Parsinejad M., Abbasi F., and Navabian M. 2011. Study the water losses and nitrate and water use efficiency in alternate furrow fertigation. Journal of Water Research in Agriculture, 25(1):21-29. (in Persian)
10- Fischer H. 1979. Mixing in Inland and Coastal Waters. Academic press, pp. 302.
11- Gualtieri C. 2010. RANS-based simulation of transverse turbulent mixing in a 2D geometry. Environ Fluid Mech, 10:137–156. DOI 10.1007/s10652-009-9119-6.
12- Gualtieri C., and Mucherino C. 2007. Transverse turbulent diffusion in straight rectangular channels. 5th International Symposium on Environmental Hydraulics (ISEH 2007), Tempe (USA), December, pp 1-8.
13- Kouchakzadeh S., Akram M., and Bagheri F. 2006. Hydraulic performance of corrugated pipes and developing applied conveyance relations for corrugated pipes based on their hydraulic performance. Journal of Agriculture Engineering Research, 27(7):1-18.
14- Lau Y., and Krishnappan B. 1977. Transverse dispersion in rectangular channels. Journal of Hydraulic, 103:1173-1189.
15- Miller A., and Richardson E. 1974. Diffusion and dispersion in open channel flow. Journal of the Hydraulics Division, 100:159-171.
16- Murphy E., Ghisalberti M., and Nepf H. 2007. Model and laboratory study of dispersion in flows with submerged vegetation. Water Resources Research, (43):15-27.
17- Perea H., Bautista E., Hunsaker D.J., Strelkoff T.S., Williams C., and Adamsen F.J. 2011. Nonuniform and Unsteady Solute Transport in Furrow Irrigation. II: Description of Field Experiments and Calibration of Infiltration and Roughness Coefficients. Journal of Irrigation and Drainage Engineering, (137):315-326.
18- Perea H., Strelkoff T.S., Adamsen F.J., Hunsaker D.J., and Clemmens A.J. 2010. Nonuniform and unsteady solute transport in furrow irrigation I: Model development. Journal of Irrigation and Drainage Engineering, 136(6):365–375.
19- Rowinski P.M., and Kubrak J. 2002. A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation. Hydrological Sciences-Journal-des Sciences Hydroalogiques, 47(6):893-904.
20- Rutherford J. 1994. River mixing. John Wiley and Sons, Ltd. England, pp. 347.
21- Saadatpour A., Heidarpor M., and Tabatabaei S.H. 2011. Determination of complete mixing length in a rectangular flume. Iranian Water Research Journal, 5(9):11-18. (In Persian)
22- Shirazialiyan P. 2009. The Effect of Vegetation on Process of Dispersion of Pollution in a Rectangular channel. Ms Thesis. Department of Water Engineering, Faculty of Agriculture, Isfahan University of Technology. (In Persian with English abstract).
23- Tabatabaei S.H., Heidarpour M., Ghasemi M., and Hoseinipour E.Z. 2013. Transverse Mixing Coefficient on Dunes with Vegetation on a Channel Wall. World Environmental & Water Resources Congress. MAY 19-23, 2013.Cincinnati. OHIO. USA.
24- Walker W.R., and Skogerboe G.V. 1987. Surface Irrigation: Theory and Practice. Prentice-Hall. Englewood Cliffs. New Jersey.
25- Wang C. 2003. Experimental Research on Channel Flow with Vegetation. Ph. D dissertation. HoHai University, Nanjing, pp. 150. (in Chinese)
26- West J.R., and Cotton A.P. 1980. Transverse diffusion for unidirectional flow in wide open channels. Proceedings Institution of Civil Engineers, (2):491-498.
27- Zebardast S., Tabatabaei S.H., Abbasi F., Heidarpour M., and Gaultieri C. 2015. Study the effect of discharge and bed roughness on the maximum solute diffusion length in a parabolic channel. Iranian journal of soil and water research. (Accepted for publication). (in Persian with English abstract).
28- Zebardast S., Tabatabaei S.H., Abbasi F., Heidarpour M., and Gaultieri C. 2015. Study the effect of inflow rate and bed roughness on transverse mixing coefficient in nonrectangular channel. 10th International Congress on Civil engineering. Tabriz, Iran. May 2015.
29- Zebardast S., Tabatabaei S.H., Abbasi F., Heidarpour M., Gaultieri C., Hosseinipour E.Z., and Asgari K. 2015. Analysis of Complete Mixing Length in a Non-Rectangular Channel. World Environmental & Water Resources Congress, Austin-Texas–. May 2015.