اثر بیوچار تفاله پسته تولید شده در دو دمای مختلف و سطوح مختلف نیتروژن و فسفر بر غلظت برخی عناصر پرمصرف و رشد اسفناج

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه شیراز

چکیده

نیتروژن، فسفر و پتاسیم از جمله عناصر غذایی ضروری پر مصرف هستند که وظایف مهمی در گیاه بر عهده دارند. به منظور بررسی اثر بیوچار تفاله پسته و کود شیمیایی بر رشد و ترکیب شیمیایی گیاه اسفناج (رقم viroflay)، آزمایش گلخانه‌ای به صورت فاکتوریل (3×3×2) در قالب طرح کاملاً تصادفی و با سه تکرار انجام شد. تیمارها شامل سه سطح بیوچار تهیه شده از تفاله پسته (صفر، 3 و 6 درصد وزنی) تولید شده در دو دمای 200 و 400 درجه سلسیوس و سه سطح نیتروژن و فسفر ]صفر، (نیتروژن 80 و فسفر 15 میلی‌گرم در کیلوگرم) و (نیتروژن 150 و فسفر 30 میلی‌گرم در کیلوگرم)[ بود. نتایج نشان داد که بیوچار تولید شده در دمای 200 و 400 درجه سلسیوس اثر معنی‌داری بر وزن خشک گیاه اسفناج نداشت. کاربرد هر دو سطح نیتروژن و فسفر سبب افزایش معنی‌دار میانگین وزن خشک گیاه اسفناج در مقایسه با تیمار شاهد شد. کاربرد بیوچار تولید شده در دمای 200 درجه سلسیوس غلظت نیتروژن، فسفر، و پتاسیم اندام‌های هوایی اسفناج را به طور معنی‌داری نسبت به شاهد افزایش داد، اما بیوچار تولید شده در دمای 400 درجه سلسیوس تنها سبب افزایش معنی دار غلظت فسفر و پتاسیم شد. اضافه کردن هر دو سطح نیتروژن و فسفر سبب افزایش معنی‌دار غلظت نیتروژن و فسفر و کاهش معنی دار غلظت پتاسیم اندام‌های هوایی نسبت به شاهد شد. دمای تولید بیوچار اثر معنی داری بر وزن خشک و غلظت نیتروژن اندام هوایی اسفناج نداشت اما کاربرد بیوچار تولیدی در دمای 400 درجه سلسیوس سبب کاهش معنی دار غلظت فسفر و افزایش معنی دار غلظت پتاسیم اندام هوایی نسبت به بیوچار تولید شده در دمای 200 درجه سلسیوس شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Pistachio Residue Biochar Prepared at Two Different Temperatures and Different Nitrogen and Phosphorus Levels on Some Macronutrients Concentration and Spinach Growth

نویسندگان [English]

  • Hamed Rajabi
  • Sedigheh Safarzadeh Shirazi
  • Abdolmajid Ronaghi
Shiraz University
چکیده [English]

Introduction: Application of chemical fertilizer is one of the methods to supply nutrient elements for plants and it is an effective method to meet plants nutrients demands; but organic fertilizers such as biochar application can be used as a proper solution to decrease gases resulted from agricultural activities, increase soil's organic matters and to manage soil fertility. Biochar can increase soil fertility of some soils, increase agricultural productivity, and provide protection against some foliar and soil-borne diseases. Biochar is a high-carbon charcoal used as a soil amendment and it is made of plant biomass and produced during pyrolysis process in the absence of oxygen. The ability of biochar to store C and improve soil fertility will depend on its physical and chemical properties, which can be varied in the pyrolysis process (pyrolysis temperature) or through the choice of raw materials.
Materials and methods: In order to study the effect of pistachio residue biochar produced in two different temperatures and chemical fertilizer on macronutrients concentration and growth of spinach (viroflay) (Spinacia oleracea), a greenhouse experiment was conducted in a factorial (2×3×3) arranged in a completely randomized design with three replications. Treatments consisted of three biochar levels (0, 3, and 6% by weight) prepared at two temperatures (200 and 400 °C), and three fertilizers level [0 (blank), (Nitrogen=80 and Phosphorous=15 mg kg-1 soil) and (Nitrogen =150 and Phosphorous =30 mg kg-1 soil)]. Bulk soil sample was collected from the surface horizon (0–30 cm) in Bajgah Agricultural Station of Shiraz University, Iran. Pots contained 2 kg dry soil. Treatments were added to all pots uniformly and were mixed. Then soil samples incubated in 25 ̊C for 30 days; and soil moisture was kept at about field capacity (FC). Following incubation time, based on soil analysis nutrients were added to all pots uniformly. Ten seeds were sown in each pot, and soil moisture was kept at about field capacity. Spinach seedlings were thinned to five uniform plants per pot 15 days after emergence. The pots were then maintained under FC. Plants were harvested after 8 weeks after emergence. Aerial parts of spinach plants were separated and oven dried and were weighed and ground. Total nitrogen (N), phosphorous (P) and potassium (K) in plants were measured. Statistical analysis was performed using SAS and Excel statistical software packages.
Results and discussion: Results showed that biochar prepared at 200 and 400 ̊C had no significant effect on spinach dry weight (DW). Chemical fertilizer significantly increased average of spinach DW. Chemical fertilizers improved N and P concentration in plant, therefore increase growth of spinach than control. Biochar prepared at 200 and 400 ̊C significantly increased shoots N, P and K concentration of spinach compared to that of control; but biochar prepared at 400 ̊C had significant effect on shoots N and P concentration. Biochar might be direct nutrition resources for plant and supply many nutritional elements such as N, P and K for plant and increase concentration of these elements in plant. Application of chemical fertilizer significantly increased N and P and significantly decreased K concentration in spinach shoot. Several studies showed that application of biochar improved efficiency of nitrogen fertilizer in several soils and finally more nitrogen absorbed by plant. Biochar prepared at two temperatures had no significant effect on DW and shoot N concentration of spinach. However, addition of biochar prepared at 400 ̊C significantly decreased shoot P concentration and significantly increased shoot K concentration in spinach, as compared to biochar prepared at 200 ̊C.
Conclusion: Results indicated that application of biochar prepared at 200 and 400 ̊C improve composition of spinach but had no effect on its DW, probably because of short term of plant growth, kind of biochar, and biochor levels. Applications of biochar, increased shoot N and P concentration; it might be due to improving physical, chemical and biological properties of soil with addition of biochar. Also, biochar supplied nutritional elements and improve efficiency of chemical fertilizer; therefore it is appropriate that biochar applied with chemical fertilizers. Our results showed that 6% biochar level was the best suggested levels that in three chemical fertilizer levels increased shoot N and P concentration of spinach. With increasing temperature for preparing biochar, pH of biochar increased; so, it might be concluded that biochar prepared at low temperature was appropriate than biochar prepared at high temperature for application to calcareous soils.

کلیدواژه‌ها [English]

  • chemical composition
  • Fertilizer
  • Spinach yield
1- Biederman L. A., and Harpole W. S. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. Global Change Biology Bioenergy, 5(2): 202-214.
2- Blackwell P., Shea S., Storer P. Z., Solaiman Z., Kerkmans M., and Stanley I. 2007. Improving wheat production with deep banded oil mallee charcoal in Western Australia. In First Asia Pacific Biochar Conference, Terrigal, Australia (Vol. 30).
3- Blackwell P., Reithmuller G., and Collins M. 2009. Biochar application to soil. In Lehmann, J., Joseph, S. (eds.). Biochar for Environmental Management: Science and Technology. London: Earthscan Publishing. 405p.
4- Bremner J. M. 1996. Nitrogen total. In: Sparks, D. L. (Ed.). Methods of Soil Analysis, Part 3. Chemical Methods. Soil Science Society of America, Madison, Wisconsin, pp.1085-1121.
5- Carter S., Shackley S., Sohi S., Suy T. B., and Haefele S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3:404-418.
6- Chan K. Y., Van Zwieten L., Meszaros I., Downie A., and Joseph S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8): 629-634.
7- Chapman H. D., and Pratt D. F. 1961. Methods of Analysis for Soil, Plant, and Water. University. California. Division Agriculture. Soil Science, PP. 60-62.
8- Clough T. J., and Condron L. M. 2010. Biochar and the nitrogen cycle: Introduction. Journal of Environmental Quality, 39(4): 1218-1223.
9- Deluca T. H., MacKenzie M. D., and Gundale M. J. 2009. Biochar effects on soil nutrient transformations. In: Lehmann J., Joseph S. (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 251–270.
10- Ding Y., Liu Y. X., Wu W. X., Shi D. Z., Yang M., and Zhong Z. K. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, and Soil Pollution, 213(1-4): 47-55.
11- Enders A., Hanley K., Whitman T., Joseph S., and Lehmann J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114: 644-653.
12- Farzaneh N., Golchin A., Hashemi Majd K. 2010. The effect of different supplement nitrogen and potassium levels and on yield, nitrogen and potassium concentration of tomato leaves. Science and Technology of Greenhouse Cultivation, 1(1): 27-33. (in persian).
13- Gaskin, J. W., Steiner C., Harris K., Das K. C., and Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6): 2061-2069.
14- Gaskin J. W., Speir R. A., Harris K., Das K. C., Lee R. D., Morris L. A., and Fisher D. S. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2): 623-633.
15- Gee G. W., and Bauder J. W. 1986. Particle size analysis, hydrometer methods. In: Methods of Soil Analysis. D. L. Sparks et al. (eds.) part 2. American Society of Agronomy. Inc: Madison, WI. pp: 383-411.
16- Glyn, M. F. 2002. Mineral nutrition, production and artemisin content in Artemisia annual. Acta Horticulture, 426: 721-728.
17- Grant, C., Bittman S., Montreal M., Plenchette C., and Morel C. 2005. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science, 85(1): 3-14.
18- Havlin J. L., Beaton J. D., Tisdale S. L., and Nelson W. L. 1999. Soil fertility and fertilizers, an introduction to nutrient management. Prentice – Hall, Inc.
19- Hossain M. K., Strezov V., Chan K. Y., Ziolkowski A., and Nelson P. F. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223-228.
20- Jeffery S., Verheijien F. G. A., van der Velde M., and Bastos A. C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144: 175–187.
21- Ju X. T., Kou C. L., Christie P., Dou Z. X., and Zhang F. S. 2007. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution, 145(2): 497-506.
22- Kishimoto S., and Sugiura G. 1985. Charcoal as a soil conditioner. International Achievement Future, 5: 12-23.
23- Knudsen D., Peterson G. A., and Pratt P. F. 1982. Lithium, sodium and potassium. Part 3. In: Page, A. L. (Ed.).part3. Methods of Soil Analysis, Chemical and microbiological properties. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, pp. 225-246.
24- Lehmann J. 2007. Bio-energy in the black. Front. Ecol. Environ, 5: 381–387.
25- Lehmann J., and Joseph S. 2009. Biochar for environmental management. Science and Technology. London: Earthscan Publishing, 405p.
26- Lehmann J., and Rondon M. A. 2005. Bio-char soil management on highly weathered soil in the humid tropics’. Chapter 36. In: Uphoff N. (ed) Biological approaches to sustainable soil systems. CRC, Boca Raton, pp 517–530.
27- Lehmann J., Kem D., German L., McCann J., Martis G. C., and Moreira L. 2003. Soil fertility and production potential. Chapter 6. In: Lehmann J, D. C. Kern, B. Glaser, W. I. Woods (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic, Dordrecht, pp 105–124.
28- Lindsay W., and Norvell W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3): 421-428.
29- Liu T., Liu B., and Zhang W. 2014. Nutrients and heavy metals in Biochar produced by sewage sludge pyrolysis: It’s application in soil amendment. Polish Journal of Environmental Studies, 23(1): 271-275.
30- Major J., Steiner C., Downie A., and Lehmann J. 2009. Biochar effects on nutrient leaching. In Lehmann, J., Joseph, S. (eds.). Biochar for Environmental Management: Science and Technology. London: Earthscan publishing. 405p. Lehmann, J. 2007. Bio-energy in the black. Frontiers in Ecology and the Environment. 5: 381–387.
31- Major J., Rondon M., Molina D., Riha S. J., and Lehmann J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333(1-2): 117-128.
32- Mazloumi F., and Ronaghi A. 2012. Effect of salinity and phosphorus on growth and chemical composition of two varieties of spinach. Journal of Science and Tecnology of Culture, 9:85-94. (in persian).
33- Nelson D. W., and Sommers L. E. 1996. Total carbn, organic carbn, and organic matter. 3rd Ed. In: Sparks, D. L., et al., (Ed). Methods of Soil Analysis. Part 3, Chemical and microbiological properties. Soil Science of America and American Society of Agronomy, Madison, Wisconsin, pp: 961-1010.
34- Page A. L., Miller R. H., and Keeney D. R. 1982. Methods of Soil Analysis, Part2, 2nd Ed., Soil. Sci. Soc. Am. and Am. Soc. Agron., Madison.WI.
35- Rhoades J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. D. L. Sparks et al. (eds.). Part 3. 3rd ed. American Society of Agronomy, Inc: Madison, WI. pp: 417-436.
36- Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A. R., and Lehmann J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3): 271-284.
37- Sheikhi J., and Ronaghi A. 2013. Influence of nitrogen and salinity levels on yield, nitrogen uptake, nitrate concentration and chlorophyll content of spinach and some properties of post-harvest soil in a calcareous soil. Journal of Science and Tecnology of Culture, 12: 1-11. (in Persian with English abstract ).
38- Steiner C., Das K. C., Garcia M., Forster B., and Zech W. 2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralso. Pedobiologia, 51: 359–366.
39- Takebe M., Ishihara T., Matsuno K., Fujimoto J., and Yoneyama T. 1995. Effect of nitrogen application on the contents of sugars, ascorbic acid, nitrate and oxalic acid in spinach (Spinacia oleracea L.) and komatsuna (Brassica campestris L.). Japanese Journal of Soil Science and Plant Nutrition (in Japanease with English abstract), 66: 238-246.
40- Thies J. E., and Rillig M. C. 2009. Characteristics of biochar: biological properties. Sterling. In Lehmann, J. and Joseph, S. (eds.). Biochar for Environmental Management. Science and Technology. London. Earthscan Publishing, PP: 85-105.
41- Thomas G. W. 1996. Soil pH and soil asidity. In: Methods of Soil Analysis D. L. Sparks et al. (eds.) part 3. 3rd ed. American Scoiesty of Agronomy. Inc: Madison, WI. pp: 475-490.
42- Vaccari F. P., Baronti S., Lugato E., Genesio L., Castaldi S., Fornasier F., and Miglietta F. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34(4): 231-238.
43- Watanabe F. S., and Olsen S. R. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6): 677-678.
44- Yuan J. H., Xu R. K., and Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3): 3488-3497.
45- Zahedifar M., Ronaghi A. M., Moosavi S. A. A., and S. Safarzadeh Shirazi. 2010. Influence of salinity and nitrogen levels on growth, yield, and nutrient uptake of tomato in hydroponics culture. Journal of Science and Technology of Greenhouse culture, 1 (2):31-40.
46- Zhang W. J., Li Z. F., Zhang Q. Z., Du Z. L., Ma M. Y., and Wang Y. D. 2011. Impacts of Biochar and Nitrogen Fertilizer on Spinach Yield and Tissue Nitrate Content from a Pot Experiment [in n Japanease with English abstract]. Journal of Agro-Environment Science, 10:1946-1952.