تأثیر بیوچار باگاس نیشکر بر رشد گیاه ذرت در خاک آلوده به کادمیوم و سرب

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 شهید چمران اهواز

چکیده

امروزه روش‌های مختلفی برای کاهش اثرات منفی غلظت بالای فلزات سنگین موجود در خاک، استفاده می‌شود. در این راستا، استفاده از بیوچار، روش نسبتاً جدیدی جهت کاهش سمیت فلزات سنگین می‌باشد. در این مطالعه، به منظور بررسی تأثیر بیوچار باگاس نیشکر بر بهبود رشد گیاه ذرت در خاک‌ آلوده به کادمیوم و سرب، آزمایشی گلدانی در قالب طرح پایه بلوکهای کامل تصادفی انجام شد. تیمارهای آزمایش شامل دو سطح کاربرد بیوچار باگاس نیشکر (0 و 4 درصد وزنی) و دو سطح آلودگی فلز سنگین (کادمیوم 50 و 100 میلی‌گرم بر کیلوگرم خاک و سرب 500 و 1000 میلی‌گرم بر کیلوگرم خاک) با کاشت گیاه ذرت بود؛ که در دو آزمایش جداگانه برای دو عنصر کادمیوم و سرب انجام شده است. نتایج نشان داد که افزایش کاربرد تیمارهای کادمیوم و سرب، غلظت این دو عنصر در اندام هوایی و ریشه گیاه ذرت را شدیداً افزایش داده و وزن خشک اندام هوایی و ریشه را به ترتیب بین 40 تا 50 درصد و بین 60 تا 70 درصد کاهش داد. همچنین افزایش کاربرد کادمیوم و سرب میزان کلروفیل، سطح برگ، ارتفاع گیاه و وزن خشک ریشه و اندام هوایی را به صورت معنی‌داری کاهش داد. اما کاربرد بیوچار باگاس نیشکر در اثر کاهش شدید غلظت کادمیوم و سرب در ریشه و اندام هوایی موجب افزایش کلروفیل، سطح برگ، ارتفاع گیاه و وزن خشک ریشه و اندام هوایی گردید. کاربرد 4 درصد بیوچار باگاس نیشکر، منجر به کاهش ضریب انتقال و فاکتور تجمع زیستی این عنصر در گیاه ذرت نسبت به تیمار متناظر گردید. نتایج بدست آمده بیانگر توان بیوچار باگاس نیشکر در تثبیت و غیر قابل جذب کردن سرب و کادمیوم در خاک بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Sugercan bagasse,s biochar on maize plant growth, grown in lead and cadmium contaminated soil,s

نویسندگان [English]

  • M. Biria 1
  • Abdulamir Moezzi 2
  • H. AmeriKhah 1
1 Shahid Chamran University of Ahvaz
2 Shahid chamran universty of ahwaz
چکیده [English]

Introduction: Among wide variety of soil pollutants including heavy metals, acidic precipitation and other toxicants, the importance of heavy metals due to their pollution capacity has received growing attention in recent years. These metals enters into soil through municipal and industrial sewage as well as direct application of fertilizer and pesticides. High cadmium and lead concentration in soil lead to severe environmental pollution. Such pollution not only has a destructive effect on crop yield but also endangers human being and other creatures’ health after entering in their food chain. Several physical, chemical and biological methods used to reduce the adverse effect of high concentration of heavy metals in soil. In spite of the hight cost, these methods are not always suitable for reclamation of small area and mostly have side effect on physico-chemical and biological characters of soil, after application. Biochar produced by thermal decomposition of biomass in the absence or presence of low oxygen. These material due to their high spacific surface area and high cation exchange capacity may have great ability to absorb charged material including heavy metals. Therefore in this study attempt is made to evaluate the effect of sugarcane bagasse –derived biochar in improving maize plant growth in cadmium and lead contaminated soils.
Material and methods: This study was carried out during the year 2014 in two separate experiments in Shahid Chamran university. The treatments in each case consisted of two levels of sugarcane bagasse made biochar (0 and 4 percent by weight) in combination with each soil, properly contaminated with 50 and 100 mg cadmium per kg soil in first experiment and 500 and 1000 mg lead per kg soil in the second. The treated soils were applied to pot and arranged in a complete randomized block designe and replicated 3 times. Prior to introduction of soil to pots, the heavy metal contaminated soils with moisture content around 70 percent of F.C. were incubated for 30 days. During incubation period sugarcane bagasse was dried, milled, sieved, compacted and subjected to traditional furnace at 550 oc for 3 hours on low pyrolysis. The furnace temperature was controlled manually using lesser thermometer. The furnace cooled down and the collected sugarcane bagasse made biochar sieved again. The incubated soil mixed with proper amount of sugarcane bagasse made biochar and incubated under previous condition for 45 days. The treated soils were poured to the labeled pots and 3 maize seeds were sown in each pot and two weeks after emergence thinned to one plant per pot. Nineteen days after sowing, the height of the plants and chlorophyll index were recorded and plants were harvested and leaf area of each plant was recorded, maize root content of each pot were carefully separated from soil and along with shoot property washed, dried, weighed and after milling subjected to chemical analysis. Prior to sowing maize seeds some of physic- chemical properties of untreated soil were estimated. Furthermore few charactoristics of sugarcane bagasse made biochar including pH and EC in 1 : 10 solution of biochar to water recorded. N, C, H, O concentration were estimated by elementary analyzer. Cation exchange capacity of sugarcane bagasse made biochar was measured by ammonium acetate method. Moreover its functional group determined by FT-IR method. Specific surface area estimated as per Branuar Emmet Teller (BET) method. Sugarcane bagasse made biochar image was obtained from scanning electron microscope. Cadmium and lead concentration in root and shoots were estimated by atomic absorption spectrometer after wet digestion. SAS software was used for statistical analysis data which fallowed by Duncan test to compare the mean values.
Results and discussion: The results showed that implementation of cadmium and lead led to decrease in chlorophyll index, leaf area, height of plant and root and shoot dry weight significantly. But the sharp decline in the concentration of cadmium and lead in root and shoot after sugarcane bagasse made biochar application improved chlorophyll index, leaf area, height of plant, root and shoot dry weight. Application of 4% Sugarcane bagasse made biochar, decreased transfer factor (TF) and bioaccumulation factor (BF) of these elements compared to control. The results showed high capability of sugarcane bagasse made biochar to absorb cadmuim and lead and reduce their availability to plant respectively. In fact application of sugarcane bagasse made biochar dwindled cadmium and lead absorption as well as their transfer factor and bioaccumulation factor, and hence improved plant growth.
Conclusion: The results obtained after sugarcane bagasse made biochar application mainly initiated due to high cation exchange capacity of which eventually was created by large number of functional groups in its high specific surface area (table 2) to stabilize cadmium and lead and render them unavailable to plant and hence improve its growth.

کلیدواژه‌ها [English]

  • Bioaccumulation
  • Biomass
  • Fixation
  • Heavy metal
  • Transfer Factor
1- APPHA. AWWA. WPCE. 1992. Standard methods for Examination of Water and Wastewate. 18 Ed, 37-42, 157-160.
2- Beesley L. E., Moreno-Jimenez L., Jose J.L., Gomez-Eyles E., Harris B., Robinson B., and Sizmur T. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159; 3269-3282.
3-Carter S., Shackley S., Sohi S., Suy T. B., and Haefele S. 2013. The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy, 3: 404-418.
4- Del Rio – Celestino M., Font R., and More no – Rajas R. 2006. Uptake of lead and zinc by wild plant growing on contaminated soils. Industrial Crops and Products. Article in press.
5- Dong X., Ma L. Q., Zhu Y., Li Y., and Gu B. 2013. Mechanistic nvestigation of mercury sorption by brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectronspectroscopy and flow calorimetry. Enviromental Science Technology, 47: 12156–12164.
6- FAO/WHO. 1984. List contaminats and their maxium leves in foods. Codex Alimentarius commission. Available at http:// www.codex alimentarius.org. (Visited on 10 November. 2012).
7- Ghazanshahi G. 2006. Water and soil and plant analysis. Yyzh publications.
8- Gholami Kazargi M., Moezzi A. A., and amerikhah H. 2012.Move the lead on calcareous soils in the presence of EDTA and surfactant Anionian.First national conference on tourism and ecotourism Iran.
9- Glaser B., Lehmann J., and Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A Review. Biology and Fertility of Soils, 35: 219-230.
10- Golchin I. P., Safavi S., and Ateshnama, K. 2006. Native plant species superabsorbent lead and zinc in the province. Proceedings of the Conference on soil, environment and sustainable development. Karaj, pp: 22-21.
11- Groppa M. D., Tomaro M. L., and Benarides M. P. 2007. Polyamines and heavy metal stress: the antioxidant behavior of spermine in Cadmium and Copper treated wheat leaves. Biometals, 20: 185-195.
12- Hamzei E., Lakzian A., Astaraei A. R., and Fotovat A. 2013. Effect of biochar and wastewater on soil cadmium availability and growth of mung bean.Conference of Agricultural Sciences and Natural Resources Sari B.danshgah resources management.
13- Jalalipur J. 2014. The Biochar Effect on Yield of Sunflower (Helianthus annuus L.) and Cadmium Bioavailability in Soil. Thesis Submitted in Partial Fulfillment of the Requirement for the degree of Master of Science (M. Sc) in Soil Science. Graduate School Faculty of Water and Soil Department of Soil Science. University of Zabol.
14- Kabata-Pendias A. 2000. Trace elements in soils and plants. Londan. CRC Press.
15- Karimi R., Chorom M., and Mahmod, S. 2011. Oil-contaminated soils to assess the potential of lead, cadmium and nickel by Joe and Colza.First National Conference on strategies to achieve agricultural Paydar. Payame Noor University, Khuzestan province.
16- Kharea P., Dilshada U., Routb P.K., Yadava V., and Jaina S. 2013. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions. Arabian Journal of Chemistry Available online 5 December 2013.
17- Lehmann J., and Joseph S. 2009. Biochar for environmental management: science and technology. Earthscan, London and Sterling,VA USA, 2009.
18- Liang B., Lehmann J., Solomon D., Kinyangi J., Gross man J., O’Neill B., Skjemstad J.O., Thies .J., Luizao, F. J., Petersen J., and Neves E. G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70:1719–1730.
19- Marchiol L., Assolari S., Sacco P., and Zerbi G. 2004. Phytoextraction of heavy metals by canola (Brassica napus) and Radish (Raphanus sativus) grown on multicontaminated soil. Enviromental Poullution, 132: 21-27.
20- Marschner H. 2011. Marschner's mineral nutrition of higher plants. Academic press.‏
21- Mc Grath S. P., Chaudri A. M., and Giller K. E. 1995. Long-term effects of metals in sewage on soils, microorganisms and plants. Journal of industrial and biotechnology, 14: 94-104.
22- Mortvedt J. J. 1996. Heavy Metal contaminated in inorganic and organic fertilizers. Fertilizer research, 43: 55-61.
23- Namgay T., Singh B., and Singh B.P. 2010 .Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil research, 48: 638-647.
24- Nigussie A., Kissi E., Misganaw M., and Ambaw G. 2012. Effect of Biochar Application on Soil Properties and Nutrient Uptake of Lettuces (Lactuca sativa) Grown in Chromium Polluted Soils. American-Eurasian. Journal of Agriculture and Environmental Sciences, 12 (3): 369-376.
25- Novak J. M., Busscher W. J., Watts D. W., Laird D. A., Ahmedna M. A., and Niandou M. A. S. 2010. Short-term CO2 mineralization after additions of biochar and switcgrass to a Typic Kandiudult. Geoderma, 154(3-4): 281-288.
26- Orcutt D. M., and Nilsen E. T. 2000 .Plant physiology under stress. John Willy Inc Page, A. L., 1974. Fact and effects of trace element in sewage sludge when applied to agricultural lands. Enviromental Technology. Ser, EPA-670/2-74005. Cincinnati Ohio.
27- Page A. L., Miller R. H., and Keeney D. R. 1982. Methods of soil analysis Agronomy No G. Partz USA. Inc.
28- Park J. H., Choppala G. H., Bolan N. S., Chung J. W., and Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil, 348: 439–451.
29- Pas J. I., and Jones W. 2000. The handbook of trace element. ST. Lucie press Bocarton, Florida.
30- Rahoads J. D., Ingvabon R. D., and Hatcher, D. D. 1970. Labortory determination Leacheable soil boron. Soil Science Socitey of American, 34: 871-875.
31- Rajkovich R., Akioenders R., Hanley K., Hyland C., Zimmerman A. R., and Lehmann, J. 2011. Corn growth and nitrogen nutrition after additions. Biology and Fertility of Soils, 48(3): 271-284.
32- Ramazani M., and Ghasemi S. 2011 .Study of phytoremediation lead by maize (Zea mays L.). First National Conference on phytoremediation. Tehran, February 2011.
33- Sohi S., Lopez-Capel E., Krull E., and Bol R. 2009. Biochar’s role in soil and climate change: a review of research needs. CSIRO Land and Water Science Report, 59: 1–57.
34- Sharma P., and Duby R. S. 2005. Toxicity in plants. Brazil Journal Plant physiology, 17(1): 35-52.
35- Song W., and Guo M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94: 138-145.
36- Temple P. J., and Bisessar B. 1981. Uptake and toxicity of nickel and other metals in crops growth on soil contaminated by nickel refinery. Plant Nurtient, 3: 473 – 482.
37-Thomas S.C., Frye S., Gale N., Garmon M., Launchbury R., Machado N., Melamed S., Murray J., Petroff A., and Winsborough C. 2013. Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal Enviromental Management, 15:129:62-8.
38- Verstraete W., and Top E. M. 1999. Soil clean – up : lessons to remember. International Biodeteriortions and Biodradation, 43 : 147-153.
39-Wal kely A., and Black, I. A. 1934. An examination of the degty are method for determination of soil organic matter and proposed modification of chronic acid method. Soil Science, 37: 29-38.
40-Yaghoobzadeh F. 2011. Phytoremediation Cadmuiem by maize (Zea mays L.). Master's thesis, Islamic Azad University of Saveh.
41-Yang X. E., Long X.X., Ye H.B., He Z.L., Calvert D.V., and Stoffella P.J. 2004. Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil, 259:181-189.
42- Yu X. Y., Ying G. G., and Kookana R. S. 2009. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere, 76: 665–671.