بررسی تغییرات اندازه ذرات با استفاده از روش نوین پراش لیزری و کانی‌شناسی رسی خاک‌های مدرن لسی در طول گرادیان اقلیمی در شمال ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه کشاورزی ومنابع طبیعی گرگان

2 موسسه لیاگ هانوفر

3 کلن

4 دانشگاه زابل

5 موسسه لیاگ- هانوفر

چکیده

مطالعه لس‌های شمال ایران به دلیل قرار گرفتن در میانه کمربند لسی آسیا و اروپا دارای اهمیت بسزایی است. علاوه بر این لس ها به دلیل قرار گرفتن در یک شیب اقلیمی که از شمال به جنوب و از غرب به شرق میزان بارندگی در آن افزایش می‌یابد و تقریباً دما در آن ثابت است برای بررسی تغییرات اقلیمی و شرایط محیطی بسیار مناسب است. هدف از این مطالعه بررسی روند تغییرات اندازه ذرات در این شیب اقلیمی و استفاده از اندازه ذرات و کانی‌شناسی رسی و پذیرفتاری مغناطیسی برای تعیین منشا رسوبات خاک‌های مدرن بود. از این‌رو، 6 خاکرخ در طول گرادیان اقلیمی با بارندگی‌های مختلف از حدود 200 تا 700 میلی‌متر در نظر گرفته شد و آنالیزهای اندازه ذرات و کانی‌شناسی رسی بر روی آنها انجام شد. نتایج نشان داد که میانه اندازه ذرات و U-ratio به سمت مناطق با بارندگی بیشتر کاهش و مقدار رس و سیلت ریز افزایش یافت. میکا و کلریت وکائولینیت کانی‌های بخش رس و کوارتز و پلاژیوکلاز کانی‌های بخش سیلت مواد مادری در طول گرادیان اقلیمی مقدارشان ثابت بود. تغییرات اندازه ذرات نشان داد که با دور شدن از منطقه با بارش کمتر در شمال منطقه از منبع اصلی دور شده و روند کانی‌شناسی رسی نشان دهنده وجود منبع مشترک بین خاکهای مدرن بود؛ با این تفاوت که اقلیم تغییراتی در مقدار برخی کانی‌ها در سولوم خاک ایجاد کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Grain Size and Mineralogy Variations along the Climatic Gradient on the Surface Loess-Derived Soils in Northern Iran

نویسندگان [English]

  • Jafar Sharifi Garmdareh 1
  • farhad khormali 1
  • Christian Rolf 2
  • Martin kehl 3
  • Ali shahriari 4
  • Manfred Frechen 5
1 Gorgan University of Agricultural Sciences and Natural Resources
2 liag-hanniver
3 koeln
4 University of Zabol
5 liag-hannover
چکیده [English]

Introduction: The study of the northern Iranian loess is important since they are located in the middle of the Asian and European loess belt. In addition, presence of a climatic gradient i.e. increases in rainfall from north to south and from west to east, and the constant temperature, provide a unique area to study climate change and environmental conditions. There are many recent studies on loess-palaeosol sequences in this region, that show the grain size variation and clay mineralogy changed with increasing precipitation. The purpose of this study was to investigate the trend of grain size variations and clay mineralogy in this climatic gradient to infer origin of the surface loess in this region.
Methods and Materials: Grain size and XRD analyses were carried out on six soil profiles extending from low precipitation in DashliBorun (200mm) to high precipitation in SeyyedMiran (670mm) regions. The grain size analysis was carried out with Beckman-Coulter LS 13320 PIDS. The device uses the principle of the forward scattering of monochromatic light and its diffraction under a certain angle. The angle of diffraction is inversely proportional to particle size. That means coarser particles cause a smaller angle of diffraction compared to finer particles. This method is quick, its results offer a good reproducibility and the data are digital and direct. Necessity for only small amounts of sample material, and covering a wide range from 0.4 to 2000 mm in diameter are other advantages of this method. Nevertheless, the amount of clay percentage may be subjected to certain underestimations because particles smaller than 0.4 μm diffract light in all directions that can cause problems with detecting the signal correctly. Hence the sum of particles with less than 5.5 mm in diameter were chosen as an estimate of clay percentage. Clay fractions were separated based on the methodology outlined by Kittrick and Hope (1963) and Jackson (1975). The carbonates were initially removed using 1 N sodium acetate buffered at pH 5. The organic matter was then oxidized by treating the carbonate-free soils with 30% H2O2, and digestion in a water bath. Free iron oxides were removed from samples by the citrate dithionate method of Mehra and Jackson (1960). The clay separates were removed by centrifuge and studied by a Bruker D8 Advance X-ray diffractometer. Clay minerals were estimated semi-quantitatively from the relative x-ray peak areas of glycol-treated samples.
Result and Discussion: The grain size analysis by laser diffraction method showed that the amount of clay (12.09 %) and fine silt (7.03%) in the soil located in Dashlibron (200 mm/yr) profile had the lowest amount and the U-ratio (6.35) and the medium grain-sized particle (48.28 µm) had the highest amount during this climatic gradient. Increasing precipitation had clear impact on theses parameters, so that the maximum amount of clay (36.56 %) and fine silt (28.02%) and the minimum amount of U-ratio (1.00) and the average medium grain size (8.78 µm) were observed in SayedMiran profile with the highest precipitation (670 mm/yr). Clay mineralogical study of soil parent material showed mica, chlorite, kaolinite and smectite as dominant minerals in the soils. As the amount of precipitation increases along the climate gradient, the amount of pedogenic vermiculite and smectite increase. Silt minerals included quartz, plagioclase, potassium feldspar, mica, chlorite and calcite. The amount of quartz, plagioclase or potassium feldspar minerals did not change in parent materials. The average medium grain size and U-ratio are function of the maximum wind speed and distance from the source. In addition, weathering can affect the size of the particles and cause changes in the mineralogy and amount of minerals in the size of the silt and clay fractions. On the other hand, understanding the changes of clay minerals can provide origin-dependent changes, transport processes, and climatic variations as they are recorded in these minerals.
Conclusion: In general, it can be concluded that the medium grain size and U-ratio decreased from low rainfall regions to higher rainfall and clay and fine silt contents showed a reverse trend. Clay minerals included mica, chlorite, and kaolinite and dominant silt minerals were quartz and plagioclase in all studied soil profiles along the climatic gradients. The results showed that changes in grain size reflect the distance from the loess material sources and also indicate intensity of pedogenic processes. Mineralogical analysis showed the similar mineral types in all loess parent materials of different regions, probably indicating the similar sources for the loess. The change in minerals abundances in the upper horizons indicate the pedogenic processes affected by climatic conditions along the climate gradient.

کلیدواژه‌ها [English]

  • Clay and silt mineralogy
  • Climate and Northern Iranian loess deposits
  • grain size
1- Buggle B., Hambach U., Glaser B., Gerasimenko N., Markovic S.B., Glaser I., and Zöller L. 2009. Stratigraphy and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess paleosol sequences. Quaternary International, 196(1-2): 86-106.
2- Chen T., Xu H., Xie Q., Chen J., Ji J., and Lu H. 2005. Characteristics and genesis of maghemite in Chinese loess and paleosols: mechanism for magnetic susceptibility enhancement in paleosols. Earth and Planetary Science Letters, 240(3-4): 790-802.
3- Evans M., and Heller F. 2001. Magnetism of loess/palaeosol sequences: recent developments. Earth-Science Reviews, 54(1-3): 129-144.
4- Fanning D.S., Keramidas V.S., and El-Desoky M.A. 1989. Micas. In: Dixon, J.B., Weed, S.B. (ed.), Minerals in Soil Environments. 2nd ed. Soil Science Society of America Journal Madison, WI
5- Frechen M., Kehl M., Rolf C., Sarvati R., and Skowronek A. 2009. Loess chronology of the Caspian Lowland in Northern Iran. Quaternary International, 198(1-2): 220-223.
6- Glaccum R.A. and Prospero J.M. 1980. Saharan aerosols over the tropical North Atlantic-Mineralogy. Marine geology, 37(3-4): 295-321.
7- Gylesjö S., and Arnold E. 2006. Clay mineralogy of a red clay–loess sequence from Lingtai, the Chinese Loess Plateau. Global and Planetary Change, 51: 181-194.
8- Hartge K. 1978. Structural stability as a function of some soil properties. p. 217-223. In Modification of Soil Structure. Emerson, W.W. et al., (ed). J.W. Wiley, New York.
9- Jackson M.L. 1975. Soil Chemical Analysis. Advanced Course. University of Wisconsin, College of Agriculture, Department of Soils, Madison, Wisconsin
10- Johns W.D., Grim R.E., and Bradley W.F. 1954. Quantitative estimations of clay minerals by diffraction methods. Journal of Sedimentary Research, 24(4).
11- Karimi A., Khademi H., and Ayoubi S. 2013. Magnetic susceptibility and morphological characteristics of a loess–paleosol sequence in northeastern Iran. Catena, 101: 56-60.
12- Kehl M. 2010. Quaternary loesses, loess-like sediments, soils and climate change in Iran, Gebrüder Borntraeger Verlagsbuchhandlung. Stuttgart.
13- Kehl M., Sarvati R., Ahmadi H., Frechen M., and Skowronek A. 2005. Loess paleosoil-sequences along a climatic gradient in Northern Iran. E and G- Quaternary Science Journal, 55(1).
14- Khormali F., Ghergherechi S., Kehl M., and Ayoubi S. 2012. Soil formation in loess-derived soils along a subhumid to humid climate gradient, Northeastern Iran. Geoderma, 179: 113-122.
15- Khormali F. and Kehl M. 2011. Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. Quaternary International, 234(1-2): 109-123.
16- Kittrick J. and Hope E. 1963. A procedure for particle size separation of soils for X-ray diffraction analysis. Soil Science, 96(5): 319-325.
17- Kravchinsky V.A., Valentina S.Z., and Vladimir S.Z. 2008. Magnetic indicator of global paleoclimate cycles in Siberian loess–paleosol sequences. Earth and Planetary Science Letters, 265(3-4): 498-514.
18- Lateef A. 1988. Distribution, provenance, age and paleoclimatic record of the loess in Central North Iran. p. 93-101. Loess-Its Distribution, Geology and Soil. Rotterdam, Balkema.
19- Lauer T., Vlaminck S., Frechen M., Rolf C., Kehl M., Sharifi J., and Khormali F. 2017. The Agh Band loess-palaeosol sequence- A terrestrial archive for climatic shifts during the last and penultimate glacial-interglacial cycles in a semiarid region in northern Iran. Quaternary International, 429: 13-30.
20- Liu X.M., Rolph T., Bloemendal J., Shaw J., and Liu T.S. 1995. Quantitative estimates of palaeoprecipitation at Xifeng, in the Loess Plateau of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 113(2-4): 243-248.
21- Machalett B., Oches E.A., Frechen M., Zöller L., Hambach U., Mavlyanova N.G., Markovic S., and Endlicher W. 2008. Aeolian dust dynamics in central Asia during the Pleistocene: Driven by the long‐term migration, seasonality, and permanency of the Asiatic polar front. Geochemistry, Geophysics, Geosystems, 9(8).
22- Maher B.A., Alekseev A., and Alekseeva T. 2003. Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 201(3-4): 321-341.
23- Maher B.A., Thompson R., and Zhou L.P. 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: a new mineral magnetic approach. Earth and Planetary Science Letters, 125(1-4): 461-471.
24- Mahjoory R.A. 1975. Clay Mineralogy, Physical, and Chemical Properties of Some Soils in Arid Regions of Iran. Soil Science Society of America Journal, 39(6): 1157-1164.
25- Mehra O. and Jackson M. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and clay minerals: proceedings of the Seventh National Conference, Elsevier.
26- Middleton, N. 1986. A geography of dust storms in South‐west Asia. International Journal of Climatology, 6(2): 183-196.
27- Novothny Á., Frechen M., Horvath E., Wacha L., and Rolf C. 2011. Investigating the penultimate and last glacial cycles of the Süttő loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International, 234(1-2): 75-85.
28- Pye K. 1987. Aeolian Dust and Dust Deposits, Academic Press, Geographie physique et Quaternaire, 42(2): 205-206.
29- Rolf C., Hambach U., Novothny A., Horvath E., and Schnepp E. 2014. Dating of a Last Glacial loess sequence by relative geomagnetic palaeointensity: a case study from the Middle Danube Basin (Süttő, Hungary). Quaternary International, 319: 99-108.
30- Soil Survey Staff. 2014. Keys to soil Taxonomy, 12th ed. U.S. department Department of agricultureAgriculture, Natural resources Resources conservation Conservation serviceService.
31- Sun D.H., Su R.X., Li Z.J., and Lu H.Y. 2011. The ultrafine component in Chinese loess and its variation over the past 7· 6 Ma: implications for the history of pedogenesis. Sedimentology, 58(4): 916-935.
32- Tsoar H. and K. Pye. 1987. "Dust transport and the question of desert loess formation." Sedimentology 34(1): 139-153.
33- Valaee M., Ayoubi S., Khormali F., Lu S.G., and Karimzadeh, H.R. 2016. Using magnetic susceptibility to discriminate between soil moisture regimes in selected loess and loess-like soils in northern Iran. Journal of Applied Geophysics, 127: 23-30.
34- Vandenberghe J. 2013. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Science Reviews, 121: 18-30.
35- Vlaminck S., Kehl M., Lauer T., Shahriari A., Sharifi J., Eckmeier E., Lehndorff E., Khormali F., and Frechen M. 2016. Loess-soil sequence at Toshan (Northern Iran): Insights into late Pleistocene climate change. Quaternary International, 399: 122-135.
36- Wang X., Wei H., Khormali F., Taheri M., Kehl M., Frechen M., Lauer T., and Chen F. 2017. Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications. Quaternary International, 429: 41-51.
37- Wilson, M. 1999. The origin and formation of clay minerals in soils: past, present and future perspectivesd. Clay Minerals, 34(1): 7-25.
38- Windom, H. L. 1975. Eolian contributions to marine sediments. Journal of Sedimentary Research, 45(2).