بررسی رابطه تغییرات رطوبت خاک با شاخص‌های اقلیمی در رویشگاه جنگلی مله سیاه در استان ایلام

نوع مقاله : مقالات پژوهشی

نویسندگان

1 سازمان تحقیقات، آموزش و ترویج کشاورزی کشور

2 دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

پایش مستقیم رطوبت خاک و استخراج داده‌های رطوبت به صورت نقطه‌ای نه تنها پر هزینه و وقت‌گیر است، بلکه در سطوح وسیع، غیر عملی است. این در حالی است که خشک‌سالی پدیده‌ای منطقه‌ای بوده و برای پایش آن به داده‌های وسیع و منطقه‌ای نیاز است از این رو، برآورد رطوبت خاک با استفاده از داده‌های هواشناسی گزینه‌ای مناسب است. پژوهش حاضر با بررسی امکان برآورد رطوبت خاک جنگل از طریق پارامترهای آب و هوایی از جمله بارندگی، دمای متوسط، میانگین حداکثر دما، میانگین حداقل دما، رطوبت نسبی، حداقل دمای مطلق، حداکثر دمای مطلق و رطوبت نسبی انجام شد. برای این منظور، در دو دامنه جنوبی و شمالی رویشگاه جنگلی مله‌سیاه در ایلام، تعداد ١٨ جفت حس‌گر سنجش رطوبت در عمق‌های ۵٠، ٧٠ و ١١٠ سانتی‌متری نصب و رطوبت خاک، با استفاده از دستگاه تی‌دی‌آر5 در فاصله زمانی ماهانه در مدت سه سال متوالی اندازه‌گیری شد. نتایج نشان داد که می‌توان از شاخص‌های هواشناسی برای برآورد بیلان رطوبت خاک در عرصه‌های جنگلی مورد مطالعه، که اندازه‌گیری مستمر و گسترده رطوبت خاک در آنها مشکل است، به‌نحو مطلوبی استفاده کرد. میزان رطوبت خاک این منطقه در شهریور ماه به حداقل خود می‌رسد. رطوبت ماهانه خاک، حتی در عمق زیاد، بیش‌ترین همبستگی را با پارامترهای اقلیمی همان ماه داشته و در این رابطه میانگین دما و رطوبت نسبی هوا به ‌ترتیب بیش‌ترین همبستگی را نشان داد. مقدار ضریب تبیین (R2) برای رابطه رگرسیونی، حدود ٩۳/٠ بود که نشان دهنده برآورد بسیار مناسب رطوبت خاک به ‌وسیله مدل می‌باشد. لذا بطورکلی می‌توان نتیجه گرفت که بر اساس پارامترهای حاصل از ایستگاه‌های هواشناسی نزدیک، می‌توان وضعیت بیلان رطوبت خاک جنگل را به نحو مناسبی برآورد و حتی حداقل برای یک ماه آتی پیش‌بینی نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Relationship between Soil Moisture Changes and Climatic Indices in the Mele-Siah Forest Site of Ilam Province

نویسندگان [English]

  • Jaafar Hosseinzadeh 1
  • Afsaneh Tongo 2
  • Ali Najafifar 1
  • Ahmad Hosseini 1
1 Agricultural Research, Education and Extension Organization (AREEO)
2 Sari Agricultural Sciences and Natural Resources University
چکیده [English]

Introduction: Direct monitoring of soil moisture and the extraction of moisture data by point method is not only costly and time-consuming, but in a large scale, is impractical; while drought is a regional phenomenon and requires extensive and regional data to monitor it. Therefore, providing a simple method for monitoring soil moisture on a regional scale is of fundamental importance. Climatological or climatic indicators that are continuously measured and recorded at weather stations can be used as information that is readily available to determine soil surface properties such as temperature and soil moisture. The main objective of this study was to estimate soil moisture under forest cover, using climatic parameters that were recorded from a nearby station. Satellite imagery is currently used to estimate the temperature and moisture status of soil, but it must also be matched with accurate ground data and sufficient weather data stations, so it will not be applicable everywhere.
Materials and Methods: Mele-Siah forest habitat in the northwest of Ilam city was selected as the study area in this research. In this regard, in both the southern and northern slopes of Mele-Siah forest site, 18 pairs of humidity sensor at depths of 50, 70 and 110 cm were installed and soil moisture using TDR device was measured monthly. Monthly measurements of soil moisture were performed for three consecutive years and recorded as soil water content. In order to determine the relationship between soil moisture data and meteorological variables, the following 7 variables were extracted from the climatic data available at Ilam Weather Station: rainfall, relative humidity, average temperature, average maximum temperature, average minimum temperature, minimum absolute temperature and maximum absolute temperature. Multiple regression analysis and Pearson correlation coefficient in SPSS software were used to analyze the data and the relationship between soil moisture and climate indices.
Results and Discussion: The results indicated that the moisture variations at the soil surface, in comparison to the other depths, are more severe in all the months of the year. Therefore, the humidity drops at a distance of 20 cm between the depths of 70 to 50 cm, much more than 40 cm between the depths of 110 to 70 centimeters. The average moisture content in the months of the year in the direction of the north was more than that one was in the direction of the south. Climatic parameters of each month had high correlations with soil moisture levels of the same month. In this regard, average temperature and relative air humidity showed the highest correlations. Soil moisture in the area is minimized in September. The determination coefficient (R2) for the regression equation was about 0.93, which represented a very good estimation of soil moisture by the model. The highest average humidity was observed in early December and March and its lowest was observed in September. Correlation coefficients between soil moisture content and climatic indices of each month with two months before of them were not significant. However, the correlation coefficients between soil moisture content and climatic indices of the same month and previous month, except for rainfall, was significant. The results showed that we can use meteorological parameters to estimate soil moisture balance in the forests, which continuous and extensive measurement of soil moisture in them is difficult.
Conclusion: According to the study, the weather indicators such as average temperature and relative humidity of air whose data are available at weather stations or easy to measurable in remote areas, can be used to estimate soil moisture content under forests cover that do not have the possibility of continuous and extensive soil moisture measurement. Although rainfall was expected to be more strongly correlated with soil moisture content, but it should be noted that rainfall in some dry months is negligible or zero. Incidentally, we often want to estimate the moisture content of the soil, especially in dry months, through measurable parameters, thus the data of rainfall is not desirable. However, considering the topography of the study area, the distance from the meteorological station and the effect of elevation on soil moisture content may be effective on the accuracy of the results, but the use of data from meteorological stations near area provides the right comparison.

کلیدواژه‌ها [English]

  • Forest
  • Meteorological Variables
  • Soil Moisture
  • TDR device
1- Alfaro E.J., Gershunov A., Cayan D. 2006. Prediction of summer maximum and minimum temperature over the central and western United States: The roles of soil moisture and sea surface temperature. J. Clim, 19: 1407–1421.
2- Babazadeh H., Norouzi Aghdam E., Aghighi H., Shamsnia S.A., and Khodadadi dehkordi D. 2012. Estimation of soil surface moisture in arid and semi-arid range lands using remotely sensed Temperature/Vegetation Index measurements (TVX) (Case Study: Khorasan Province). Iranian journal of Range and Desert Research, 19(1):120-132. (in Persian with English abstract).
3- Baier W., Robertson G.W. 1968. The performance of soil moisture estimates as compared with the direct use of climatological data for estimating crop yields. Agricultural Meteorology, 5(1): 17-31.
4- Behyar M.B. 2014. Evaluation of soil moisture in Isfahan province by E-AMS method. Journal of Geographical Research, 29(1): 1-8. (in Persian).
5- Beltrami H. 2001. On the relationship between ground temperature histories and meteorological records. Global and Planetary Change, 29: 327-348.
6- Brown Sh.E., Pregitzer K.S., Reed D.D., and Burton A.J. 2000. Predicting daily mean soil temperature from daily mean air temperature in four Northern hardwood forest stands, Forest Science. 46: 297-301.
7- Carlson T., Gillies R., Perry E. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9: 161–173.
8- Chakcko T.P., and Renuka G. 2002. Temperature mapping thermal diffusivity and subsoil heat flux at Kariavattom of Keral. Proc Indian Academy Science, 111: 79-85.
9- Chiew F.H.S., Whetton PH., McMahon T.A., and Pittock A.B. 1995. Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. Journal of Hydrology 167: 121–147.
10- Deliberty T.L., and Legates D.R. 2003. Interannual and seasonal variability of modeling soil moisture Oklahoma. International Journal of Climatology, 23: 1057–1086.
11- Destouni G. and Verrot L. 2014. Screening long-term variability and change of soil moisture in a changing climate. Journal of Hydrology, 516: 131–139.
12- Dirmeyer P.A. 2000. Using a global soil wetness dataset to improve seasonal climate simulation. Journal of Climatology, 13: 2900–2922.
13- Dickinson, R.E., 2000. How coupling of the atmosphere to ocean and land helps determine the timescales of inter annual variability of climate. Journal of Geophysical Research, 105: 20115–20119.
14- Fashaee M., Sanaee Nejad S. H., Davary K. 2016. Soil Moisture Estimation Using MODIS Images (Case Study: Mashhad Plain Area). Journal of Water and Soil. 29(6):1735-1745.
15- Gillies, R.R., Carlson, T.N., Cui, J., Kustas, W.P., and Humes, K.S., 1997. A verification of the triangle method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. International Journal of Remote Sensing, 18 (15): 3145-3166.
16- Hosseini A., Hosseini S.M., Rahmani A., and Azadfar D. 2014. Comparison between two oak stands (healthy and affected by oak decline) in respect to characteristics of competitive environments at Ilam province. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 21(4): 606-616. (in Persian with English abstract).
17- Irannejad P., Ghahreman N., Taheri P. 2013. Estimation of soil moisture content by using routine weather data in two agrometeorological stations of Iran. The 2nd International Conference on Plant, Water, Soil and Air Modeling, 8(9);1-12.
18- Khanmohammadi F., Homaee M., Noroozi A.A. 2015. Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Water and Soil Conservation, 4(2): 37-45. (In Persian with English abstract).
19- Koster R.D., Suarez M.J. 1995. Relative contributions of land and ocean processes to precipitation variability. Journal of Geophysical Research, 100: 13775–13790.
20- Koster R.D., Suarez M.J. and Heiser M. 2000.Variance and predictability of precipitation at seasonal to interannual timescales. Journal of Hydrometeorology, 1, 26–46.
21- Koster R.D., Suarez M.J. 2001. Soil moisture memory in climate models. Journal of Hydrometeorology, 2: 558–570.
22- Nandintsetseg B. and Shinoda M. 2011. Seasonal change of soil moisture in Mongolia: its climatology and modeling. International Journal of Climatology, 31: 1143–1152.
23- Narasimhan B., Srinivasan R., Arnold J.G., Di Luzio M. 2005. Estimation of long-term soil moisture using a distributed parameter hydrologic model and verification using remotely sensed data. American Society of Agricultural Engineers, 48(3): 1101−1113.
24- Pal J.S., and Eltahir E.A.B. 2001. Pathways relating soil moisture conditions to future summer rainfall within a model of the land-atmosphere system. Journal of Climatology, 14: 1227–1242.
25- Paulo C., Terry J., and Eduardo A. 2009. Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agricultural Water Management, 97: 635-644.
26- Ramezani Etemadi H., Liaqat A., Parsi Nejad M. And Ramezani Etemadi M. 2012. Study of Agricultural Drought Status Based on Soil Moisture at Synoptic Station in Qazvin. Journal of Water Research in Agriculture, 1993-93: (1) 26.
27- Robock, A., Vinnikov K.Y., Srinivasan G., Entin J.K., Hollinger S.E., Speranskaya N.A. Liu S. and Namkhai A. 2000. The Global Soil Moisture Data Bank. Bulletin of American Meteorology Society, 81, 1281–1299.
28- Shang, K. Z., Wang, S.G., Ma Y.X., Zhou, Z.J., Wang, J.Y., Liu, H.L., Wang, Y.Q. 2007. A scheme for calculating soil moisture content by using routine weather data. Atmospheric Chemistry and Physics, 7, 5197–5206.
29- Talebi A., and Pourmohommadi S. 2009. Assessment of changes in soil moisture using a physical model of water balance. Fifth National Conference on Watershed Management Science and Engineering Iran, Karaj, Iran Watershed Association. (in Persian).
30- Trajkovic S., and Kolakovic S. 2009. Estimation reference evapotranspiration using limited weather data. Irrigation and Drainage. NO.4. ASCE. 433-449.
31- Western A.W., and Grayson R. B. 1998. The Tarrawarra data set: Soil moisture patterns, soil characteristics, and hydrological flux measurements. Water Resource Research, 34: 2765–2768.
32- Yeh T.C., Wetherald R.I., and Manabe S. 1984. The effect of soil moisture on the short term climate and hydrology change-A numerical experiment. Monthly Weather Review, 112: 474–490.