کارایی روش‌های مختلف انتخاب متغیر کمکی در نقشه‌برداری رقومی کلاس خاک با استفاده از الگوریتم‌های داده‌کاوی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه ایلام

2 دانشگاه صنعتی اصفهان

3 دانشگاه تهران

چکیده

         تهیه نقشه­ های خاک با صحت مناسب یک ابزار توانمند برای دست یافتن به استفاده پایدار از اراضی در عرصه­های کشاورزی و منابع طبیعی محسوب می­شود. پژوهش حاضر در بخشی از اراضی وَرگَر شهرستان آبدانان در استان ایلام به­ منظور نقشه­ برداری رقومی کلاس‌های خاک با استفاده از مدل­های جنگل تصادفی و منطق فازی اجرا گردید. در اراضی مورد مطالعه موقعیت 44 خاکرخ تعیین، حفر، تشریح و نمونه ­برداری از کلیه افق­های ژنتیکی صورت پذیرفت. پس از انجام آزمایش‌های فیزیکوشیمیایی لازم رده‌بندی خاک­ها انجام شد. از مدل رقومی ارتفاع ماهواره آلوس پالسار و نرم‌افزار ساگا جی‌آی‌اس برای تهیه متغیرهای کمکی ژئومورفومتری استفاده گردید. سه رویکرد انتخاب متغیر شامل الگوریتم باروتا، شاخص تورم واریانس و میانگین کاهش صحت به ­همراه دو مدل داده‌کاوی جنگل تصادفی و منطق فازی برای مدل‌سازی روابط خاک-زمین­نما به کار گرفته شد. نتایج نشان داد که رویکرد انتخاب متغیر میانگین کاهش صحت به‌عنوان مناسب‌ترین روش، از تعداد 35 متغیر کمکی ژئومورفومتری منجر به انتخاب شش متغیر گردید. همچنین رویکرد مدل‌سازی جنگل تصادفی-میانگین کاهش صحت، در سطح زیرگروه با صحت عمومی و شاخص کاپای 84 و 57 درصد دارای بالاترین دقت بود. بررسی نتایج حاصل از رویکرد فازی حاکی از این بود که مقادیر شاخص کاپا و صحت عمومی این روش با سه سناریو دیگر مشابه و اختلاف ناچیزی بین صحت نتایج در سطح فامیل خاک مشاهده گردید. به‌طورکلی استفاده از رویکردهای مختلف انتخاب متغیر می‌توانند موجب افزایش دقت تهیه نقشه­ های رقومی خاک گردند. همچنین افزایش تعداد مشاهدات میدانی و استفاده از سایر متغیرهای محیطی تأثیرگذار بر روی تشکیل خاک­ها را می توان برای پیش‌بینی کلاس‌های خاک  با صحت پایین به کارگیری نمود.

کلیدواژه‌ها


1- Abbaszadeh F., Ayubi Sh., and Jafari A. 2018. Spatial forecasting of large soil groups using regression and decision tree models in the southeast region of Iran. Crop Engineering (Journal of Agricultural Science) 41: 123-146. (In Persian with English abstract)
2- Akinwande M., Dikko H., and Samson A. 2015. Variance Inflation Factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open Journal of Statistics 5: 754-767.
3- Breiman L. 2001. Random forests. Machine Learning 45(1): 5-32.
4- Breiman L., and Cutler A. 2004. Random Forests, URL: http://www. stat. berkeley. edu/users/breiman. Random Forests/cc_papers. htm.
5- Brungard C.W., Boettiger J.L., Duniway M.C., Wiks S.A., and Edwards T.C. 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239: 68-83.
6- Campos A.R., Giasson E., Costa J.J.F., Machado I.R., Silva E.B.D., and Bonfatti B.R. 2018. Selection of environmental covariates for classifier training applied in digital soil mapping. Revista Brasileira de Ciência do Solo 42.
7- Chen T., Niu R.Q., Li P.X., Zhang L.P., and Du B. 2011. Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun watershed, North China. Environmental Earth Sciences 63(3): 533-541.
8- Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., and Böhner J. 2015. System for automated geoscientific analyses (SAGA) v. 2.1.4, Geoscientific Model Development Discussions 8(2).
9- Fatehi Sh. 2015. Scale descending properties and agglomeration of soil classes in part of Karkheh River Watershed in Kermanshah Province. PhD Thesis-Faculty of Agriculture-Shahrekord University.
10- Gee G.W., and Bauder J.W. 1986. Particle-size analysis 1. Methods of soil analysis: Part 1— Physical and mineralogical methods, (methodsofsoilan1), 383-411.
11- Hengel T., Rossiter D.G., and Stein A. 2003. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Geoderma 120: 75-93.
12- Heung B., HO H.C., Zhang J., Knudby A., Bulmer C. E., and Schmidt M.G. 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 265: 62-77.
13- Jafari A., Finke P.A., Van deWauw J., Ayoubi S., and Khademi H. 2012. Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science 63(2): 284-298.
14- Khamoshi A., Sarmadian F., and Keshavarzi A. 2019. Digital soil mapping using random forest model in Abyek Region, Qazvin Province. Journal of Soil Research (Soil and Water Sciences) 32: 384. (In Persian with English abstract)
15- Kursa M.B., and Rudnicki W.R. 2010. Feature selection with the Boruta package. Journal of Statistical Software 36(11): 1–13.
16- Liaw A., and Wiener M. 2002. Classification and regression by random Forest. R news 2(3): 18-22.
17- Maghsodi Z., Rostaminia M., Faramarzi M., Keshavarzi A., and Rahmani A. 2018. Spatial forecasting of soil units in geographical information systems environment in Ilam Province. Journal of Soil Research (Soil and Water Sciences) 33: 254-268. (In Persian with English abstract)
18- Massawe B.H., Subburayalu S.K., Kaaya A.K., Winowiecki L., and Slater B.K. 2018. Mapping numerically classified soil taxa in Kilombero Valley, Tanzania using machine learning. Geoderma 311: 143-148.
19- Menezes M.D.D., Silva S.H.G., Mello C.R.D., Owens P.R., and Curi N. 2018. Knowledge-based digital soil mapping for predicting soil properties in two representative watersheds. Scientia Agricola 75(2): 144-153.
20- Minasny B., and McBratney A.B. 2016. Digital soil mapping: a brief history and some lessons. Geoderma 264: 301–311.
21- Mosleh Z., Salehi M.H., Jafari A., Borujeni I.E., and Mehnatkesh A. 2016. The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoring and Assessment 188(3): 195.
22- Mousavi S.R., Sarmadian F., Rahmani A., and Khamoushi S.E. 2019. Digital soil mapping with regression classification approaches by RS and Geomorphometrics covariates in the Qazvin plain, Iran. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
23- Nelson R.E. 1982. Carbonate and gypsum. In: Page AL (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 181–197.
24- Pahlavan Rad M.R., Toomaninan N., Khormali F., Brungard C.W., Bayram Komaki C., and Bogaert P. 2014. Updating soil survey maps using random forest and conditioned Latin hypercube in the loss derived soils of northern Iran. Geoderma 232: 97-106.
25- Rahmani A., Sarmadian F. Mousavi S.R., and Khamoushi S.E. 2019. Digital mapping of some surface soil properties using two random Forest and fuzzy logic approaches (Case Study: part of Kouhin lands, Qazvin Province). 16th Iranian Soil Science Congress. University of Zanjan. Zanjan. September 7th. (In Persian)
26- Soil science division staff. "Soil survey manual". USDA Handbook 18. 2017: 120-131.
27- Soil survey staff. 2014. Keys to soil taxonomy, United States Department of Agriculture. 12nd ed. Natural Resources Conservation Service.
28- Stum A.k., Boettinger J., White M., and Ramse R. 2010. Random forests applied as soil spatial model in arid. In digital soil mapping (pp. 179-190). Springer, Dordrecht.
29- Sumner M.E., and Miller W.P. 1996. Cation exchange capacity and exchange coefficients. Methods of soil analysis part 3—chemical methods, (methodsofsoilan3), 1201-1229.
30- Taghizadeh-Mehrjardi R., Nabiollahi K., Minasny B., and Triantafilis J. 2015. Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma 253: 67–77.
31- Van Wambeke A.R. 2000. The Newhall simulation model for estimating soil moisture and temperature regimes. Department of Crop and Soil Sciences. Cornell University, Ithaca, NY. USA.
32- Walkley A., and Black I.A. 1934. An examination of the Degtjareff method for determining soil organic
matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38.
33- Yang L., Qi F., Zhu A., Shi J., and An Y. 2016. Evaluation of integrative hierarchical stepwise sampling for digital soil mapping. Soil Science Society of America Journal 80(3): 637-651.
34- Zhao Z., Chow T. L., Rees H. W., Yang Q., Xing Z., and Meng F. 2009. Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture 65(1):36-48.
35- Zhu A.X., and Band L.E. 1994. A knowledge-based approach to data integration for soil mapping. Canadian Journal of Remote Sensing 20(4): 408-418.