اهمیت تصحیح شاخص‌های سرزمین در تعیین کلاس تناسب سرزمین

نوع مقاله : مقالات پژوهشی

نویسنده

موسسه تحقیقات خاک و آب

چکیده

ارزیابی تناسب سرزمین نقش تعیین‌کننده‌ای در تعیین تناسب سرزمین برای کاربری‌های مورد نظر دارد. برای این منظور مدل‌های گوناگونی ارایه شده که در این بین رویکرد پارامتریک جایگاه ویژه‌ای را به خود اختصاص داده است. در این رویکرد، شاخص سرزمین با استفاده از روش خیدیر (ریشه دوم) یا روش استوری به دست آمده و سپس بر اساس این شاخص، کلاس تناسب سرزمین تعیین می‌شود. متأسفانه در بسیاری از پژوهش‌هایی که در این زمینه انجام شده‌اند، شاخص سرزمین بدون اینکه اصلاح شود استفاده شده است. این موضوع سبب شده نتایج روش‌های گوناگون ارزیابی تناسب سرزمین تفاوت زیادی را با هم نشان دهند. در این پژوهش اهمیت استفاده از شاخص اصلاح‌شده سرزمین و تأثیر آن بر کلاس‌های تناسب سرزمین نشان داده شده است. برای این منظور با انجام شبیه‌سازی عددی، کلاس‌های تناسب سرزمین با چهار روش شامل 1-محدودیت ساده، 2-شدت و تعداد محدودیت، 3-خیدیر و 4-استوری و در دو حالت شاخص اصلاح‌نشده و شاخص اصلاح‌شده تعیین گردیدند. نتایج نشان دادند با استفاده از شاخص‌های اصلاح‌شده، نتایج چهار روش مورد استفاده، بویژه برای روش‌های استوری و خیدیر، بسیار به هم نزدیکتر شدند؛ اما به طور کلّی روش محدودیت ساده با روش خیدیر هماهنگی بیشتری داشت. از طرفی، استفاده از شاخص‌های اصلاح‌نشده سبب شد روش‌های مورد استفاده تفاوت زیادی را با هم نشان دادند. تجزیه و تحلیل به دست آمده از پنج میلیون بار شبیه‌سازی، نشان داد نتایج متضادی که در روش‌های گوناگون ارزیابی تناسب سرزمین وجود دارند از نظر ریاضی و احتمالات می‌توانند کاملاً منطقی و درست باشند، اما با احتمال رخداد متفاوت. روی‌هم‌رفته می‌توان گفت، نتایج حاصل از شاخص‌های اصلاح‌نشده سرزمین ممکن است تا حد زیادی نادرست و گمراه‌کننده باشند و نتایج را غیرواقعی نشان دهند. بنابراین پیشنهاد می‌گردد در تعیین کلاس‌های تناسب حتماً از شاخص‌های اصلاح‌شده استفاده گردد و سپس نتایج با واقعیت مقایسه شوند.

کلیدواژه‌ها


عنوان مقاله [English]

.

نویسنده [English]

  • M. Bagheri-Bodaghabadi
Soil and Water Research Institute
چکیده [English]

The Importance of Correcting Land Indices in Determining Land Suitability Classes
Introduction: Land evaluation plays a decisive role in determining land suitability for the intended uses. For this purpose, various approaches have been proposed, among which the parametric approach has a special place. In this approach, the land indices (LIs) are calculated using the Khidir method (the square root) and/or the storrie method, and then the land suitability classes are determined based on the LIs. Unfortunately, in many land suitability studies, the land index has been used without being corrected, called uncorrected land index. This has led to many differences in the results of different approaches of land suitability evaluation. The current study shows the importance of employment of the corrected land index and its effect on land suitability classes.
Materials and Methods: In this study land suitability classes were determined by the four methods including 1-simple limitation, 2- number and intensity of limitations, 3- Kiddir (square root) and 4- storrie, using the two cases i.e. the corrected land index and the uncorrected land index. Properties and criteria for determining land suitability classes are shown in Table1. Simple limitation method is based on the Liebig’s law or the law of the minimum. Land classes are defined according to the lowest class level of the land characteristics. Number and intensity of limitations method has been described in table 1. In parametric approach land index (uncorrected land index) is calculated using Kiddir and Storrie methods as shown in equations 1and 2, respectively. The relationships between uncorrected land indices and corrected land indices are presented in table 2.
(1)
(2)
Then, a simulation process was done for the eight characteristics involved in calculating the land suitability index. For this purpose, one million random values were created for each of the S1 to N2 classes; so that the minimum rating (Rmin) was a random number for each class in own defined range (Rating in Table 1) and the other seven characteristics were random numbers between Rmin and 100. For example, in the S2 class, a minimum random number is in the range of 60 to 85 and seven other characteristics were between this Rmin and 100. Finally, a total of five million random simulations were created.
Results and Discussion: Table 3 shows the results of five million simulations for S1 to N2 classes. Based on the minimum, maximum and mean values ​​obtained, it can be seen that the simulation process is acceptable. These numbers show that the simulations have simulated almost all the cases that may occur in reality, from the best to the worst. Based on the results, it is clear that the mean values ​​of the land indices for the Storrie method are much lower than the Khiddir ones, but the mean values ​​for the corrected land indices, do not differ too much, in the both the Storrie and Khiddir methods. These results are sufficient to conclude the importance of using the corrected land indices and to show the difference between the results obtained from the corrected land indices and the uncorrected land indices. Tables 4 to 8 show the results of one million simulations for each suitability class. The results showed that using the corrected land indices, the results of the four employed methods are much closer, especially for the Storrie and Khiddir methods. All together, the simple limitation method was more consistent with the Khiddir method. On the other hand, the employed methods differed greatly when the uncorrected land indices were used. The analysis of five million simulations has shown that the contradictory results of land evaluation methods in various studies can be quite logical, mathematically, but with a different probability. Totally, the results of the uncorrected land indices may be largely inaccurate and misleading, and may show unrealistic results. Therefore, it is strongly suggested that the corrected land indices be used in determining the suitability classes, and then the results be compared with the observations in the reality.
Conclusions: According to the findings of the current study, it can be illustrated that it is very important and necessary using the corrected land index to determine the land suitability class. The study showed, using the corrected land index leads to the closeness of the results of different methods, so that there is no significant difference between Storrie and Khiddir methods. In general, the results of the Khidir method are closer to the simple constraint method than the Storrie ones, although using the uncorrected land index, there was a very significant difference between the Khiddir and Storrie methods, but using the corrected land index the difference was too small and insignificant.

کلیدواژه‌ها [English]

  • Land suitability evaluation
  • simulation
  • Parametric method
1- Alamdari P., and Amanifar S. 2016. Land Suitability Classification of East Azerbaijan Research Station for Tomato, Potato, Onion and Bean. International Journal of Agricultural Management and Development 6(1): 117-122.
2- Ayoubi Sh., Jalalian A., and Givi J. 2001. Qualitative Land Suitability Evaluation for Important Agricultural Crops of North Baraan Region in Isfahan Province. Journal of Water and Soil Science 5(1): 57-76. (In Persian with English abstract)
3- Azadi A., and Baghernejad M. 2018. Qualitative land suitability assessment and estimating land production potential for main irrigated crops in northern of fars province. Agriculture & Forestry 64(4): 263-276.
4- Bagheri Bodaghabadi M. 2020. Assessment of corrected land index in land suitability evaluation and adjusting its functions. Journal of Water and Soil 34(6). (In Persian with English abstract, in press)
5- Bagheri Bodaghabadi M., Amini A., M.H. Salehi Hosseinifard J., and Heydari M. 2019. Suitability analysis and evaluation of pistachio orchard farming, using canonical multivariate analysis. Scientia Horticulturae 246: 528-534.
6- Bagheri M. 2011. Applied Land Evaluation and Land Use Planning. Pelk Publications. 392 p. (In Persian)
7- Delsouz Khaki B., Honarjoo N., Davatgar N., Jalalian A., and Torabi Gol Sefidi H. 2018. Land Suitability Evaluation and Inherent Soil Fertility Quality for Rice Cultivation in Paddy Fields of Shaft and Fouman Counties. Iranian Journal of Soil Research, 32(1), 115-127. doi: 10.22092/ijsr.2018.116566. (In Persian with English abstract)
8- Habibie M.I., Noguchi R., Shusuke M., and Ahamed T. 2019. Land suitability analysis for maize production in Indonesia using satellite remote sensing and GIS-based multicriteria decision support system. GeoJournal, 31p.
9- Hashemi S., and Kiani F. 2018. Qualitative land suitability evaluation for Canola and Sugar beet cultivations with FAO different methods (Gyan area, Hamedan province). Applied Soil Research 5(2): 16-30. (In Persian with English abstract)
10- Jafarzadeh A., and Zeinali M. 2005. Qualitative Assessment of Part of the Firoorgh (Khoi) Lands for Potato, Tomato and Corn Products, 9th Iranian Soil Science Congress, Tehran, Soil Conservation and Watershed Management Research Center. (In Persian)
11- Jahanbazi L., Jafarzadeh A., Shahbazi F., and Momtaz H. 2014. Qualitative Land Suitability Evaluation of Ahar Yakhfarvazan for Sugar Beet, Onion and Maize by Simple Limitation and Parametric Square Root Methods. Water and Soil Science 24(3): 121-132. (In Persian with English abstract)
12- Khiddir S.M. 1986. A statistical approach in the use of parametric systems applied to the FAO framework for land evaluation. Unpublished thesis. State University Ghent.
13- Kim H., and Shim K. 2018. Land suitability assessment for apple (Malus domestica) in the Republic of Korea using integrated soil and climate information, MLCM, and AHP. International Journal of Agriculture & Biology Engineering 11(2): 139–144.
14- Mohammadi A., Pashaei I.A., and Sadeghi S. 2007. Evaluation of soil quality fit for major agricultural products in Gonbad Kavous region. Agricultural Sciences and Natural Resources 14(5): 111-99. (In Persian with English abstract)
15- Momtaz H., Jafarzadeh Neyshabouri. 2006. Qualitative evaluation of the proportion of arable land in Ahar city for some common cultivated crops in the region. Agricultural Science 16(3): 67-81. (In Persian with English abstract)
16- Moravej K., Delavar M., and Najafi V. 2018. Importance of Using Modern Irrigation Methods in Increase of Employment and Development of Rural Areas. Geores 33(2):175-190. (In Persian with English abstract)
17- Mosleh Z., Salehi M.H., Amini Fasakhodi A., Jafari A., Mehnatkesh A., and Esfandiarpoor Borujeni I. 2017. Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multi-objective programming. Geoderma 303: 52-59.
18- Mosleh Z., Salehi M., Jafari A., Mehnatkesh A., and Esfandiarpoor Borujeni I. 2018. Assessing the Performance of Digital Mapping Approaches for the Qualitative Land Suitability Evaluation (A Case Study: Shahrekord Plain, Chaharmahal-Va-Bakhtiari Province). Journal Of Water And Soil 32(1): 87-99. (In Persian with English abstract)
19- Movahedi Naeini S. 1993. Evaluation of land suitability of important agricultural products in Gorgan region. Faculty of Agriculture, Tarbiat Modares University, 217 p. (In Persian with English abstract)
20- Neswati R., Lopulisa C., Nathan M., and Ramlan A. 2017. Land Suitability Index for Estimating Sugar Cane Productivity in the Humid Tropics of South Sulawesi Indonesia.
21- Rabia A.H., and Terribile F. 2013. Introducing a New Parametric Concept for Land Suitability Assessment International Journal of Environmental Science and Development 4(1): 15-19
22- Sarmadian F., and Ghavami M. 2020. Land Suitability Evaluation Using TOPSIS Method and Its Comparison with Parametric Methods for Maize Production in Part of Qazvin. Iranian Journal of Soil and Water Research 50(9): 2275-2287. (In Persian with English abstract)
23- Servati M. 2018. ELECTRE Tri Method Performance on Land Suitability Evaluation in Chalderan Region for Potato. Journal of Water and Soil Conservation 25(1): 271-284. (In Persian with English abstract)
24- Servati M., Momtaz H., Zali Vargahan B., and Mohammadi H. 2016. Performance evaluation of corrected land indices to determine the Potential of Maize production using FAO Method. Applied Soil Research 3(1): 65-77. (In Persian with English abstract)
25- Seyed Jalali S., Sarmadian F., and Shorafa M. 2014. Comparison of Corrected and Uncorrected Land Indices in Parametric Method of Land Suitability Evaluation. Iranian Journal of Soil Research 28(1): 127-141. (In Persian with English abstract)
26- Seyedmohammadi J., Sarmadian F., Jafarzadeh A., and Ghorbani M.A. 2018. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops Geoderma 310: 178-190.
27- Shahbazi F., and Jafarzadeh A. 2004. "Qualitative Evaluation of Landscapes of Mehr Bonab Cluster Production Cooperative for Wheat, Barley, Alfalfa, Onion, Sugar Beet and Corn". Agricultural Science 14(4): 69-86. (In Persian with English abstract)
28- Storie R.E. 1978. The Storie Index Soil Rating Revised. Davis,CA, University of California, Division of Agricultural Science, Special Publication No 3203.
29- Sys C., Van Ranst E., and Debaveye J. 1991. Land evaluation, Part II. Methods in Land Evaluation. International Training center for post graduate soil scientists, Ghent University, Ghent. 247 pp.
30- Vasu D., Srivastava R., Patil N.G., Tiwary P., Chandran P., and Kumar Singh S. 2018. A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level. Land Use Policy 79: 146–163.
31- Yohannes H., and Soromessa T. 2018. Land suitability assessment for major crops by using GIS-based multi-criteria approach in Andit Tid watershed, Ethiopia. Cogent Food & Agriculture 4: 1470481
32- Zeinadini Meymand A., Bagheri Bodaghabadi M., Moghimi A., Navidi N., Ebrahimi Meymand F., and Amirpou M. 2018. Modeling of yield and rating of land characteristics for corn based on artificial neural network and regression models in south of Iran. Desert 23(1): 85-95.