تحلیل عدم قطعیت و دقت روش های برآورد ضریب پخشیدگی طولی در رودخانه ها

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه منابع طبیعی رامین خوزستان

2 دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

ضریب پخشیدگی طولی یکی از مهم­ترین پارامترهای مدل­سازی کیفی در رودخانه­ها به حساب می­آید. روش­های متعددی جهت برآورد این پارامتر ارائه شده است که جهت تعیین کارایی آن­ها عمدتاً از معیارهای آماری دقت و خطا استفاده شده است که به­تنهایی نمی­تواند به عنوان معیار مقایسه روش­های مختلف مورد استناد قرار گیرد. بر همین اساس در این تحقیق به منظور ارزیابی کارایی روش­های مختلف برآورد ضریب پخشیدگی، تلفیقی از معیارهای عدم­قطعیت در کنار شاخص­های آماری دقت و خطا مورد استفاده قرار گرفت. جهت بررسی میزان عدم­قطعیت روش­های مختلف برآورد ضریب پخشیدگی طولی از رویکرد تحلیل فاصله استفاده گردید. به این منظور برای داده­های واقعی گزارش شده در تحقیقات قبلی، در ازای فرض  عدم قطعیت در مقادیر اندازه‌گیری شده پارامترهای مستقل، باند تغییرات محتمل ضریب پخشیدگی طولی محاسباتی برای روش­های مختلف به­دست آمد. سپس، براساس مقایسه مقادیر واقعی اندازه گیری شده ضریب پخشیدگی طولی نسبت به موقعیت باندهای عدم قطعیت محاسباتی، 10 شاخص عدم قطعیت و دقت برای هر روش برآوردکننده محاسبه گردید. در ادامه، برای تعیین مناسب­ترین روش برآورد ضریب پخشیدگی طولی با در نظرگرفتن عدم قطعیت نسبی کمتر و دقت نسبی بیشتر، کارایی روش­ها با سه مدل تصمیم گیری چند معیاره شامل CUI، TOPSIS و VIKOR، و پس از وزن دهی به 10 شاخص عدم قطعیت – دقت به روش وزن دهی  ارزیابی گردید. نتایج روش­های تصمیم­گیری چند معیاره، نزدیکی بالایی به یکدیگر داشته و در تمامی روش­ها مدل ریاضی دنگ و همکاران و مدل تجربی ژنگ و هوای از کارایی بالاتری نسبت به سایر روش­ها برخوردار بوده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

.

نویسندگان [English]

  • J. Zahiri 1
  • A. Moradi Sabzkouhi 2
1 Khozestan
2 Agricultural Sciences and Natural Resources University of Khuzestan
چکیده [English]

Introduction In recent years much attention has been paid to the environment, especially river and lake pollution. Rivers and streams are usually receiving the outlet of sewage systems which may cause pollutant levels to rise.  Pollutant dispersion is a key element in water quality modeling and the longitudinal dispersion coefficient is an important factor in stream pollution modeling due to its effect on pollutant mixing intensity. Various methods proposed to estimate longitudinal dispersion coefficient in natural streams based on different procedures and different set of data. The performance of the methods presented in previous research is mainly based on precision indices that alone cannot be used as a comprehensive index for comparing different methods.
Materials and Methods In this study, in order to evaluate the performance of different methods, a combination of uncertainty criteria along with accuracy indexes were considered. First, the interval analysis approach was used to evaluate the uncertainty of different methods such as Deng et al. (2001), Kashefipour and Falconer (2002), Sahin (2014), Zeng and Huai (2014), M5 and Gene Expression methods. For ± 10% uncertainty in the independent parameters of estimating dispersion coefficient, for all 164 measured data, the probability bands of computational longitudinal dispersion coefficient was obtained for the 6 estimator methods. Then, by comparing the actual measured values with the position of the computational uncertainty bands, 10 uncertainty and accuracy indices were calculated for each estimator method. To determine the most appropriate method for estimating longitudinal dispersion coefficient with less relative uncertainty and greater relative accuracy, weighting was performed on 10 uncertainty-accuracy indices using the G1 weighting method, and then the performance of the methods was evaluated by three multi-criteria decision models including CUI, TOPSIS and VIKOR.
Results and Discussion Based on the results, the M5 tree model has the lowest containing ratio among all methods and also has the lowest band, while the Kashefipour and Falconer (2002) model has the highest containing ratio and band values. In addition, for all methods except the method of Deng et al. (2001), the parameter of average deviation amplitude decreases with increasing containing ratio. Among the methods used, the M5 tree model has the lowest CR and the highest D. Based on the uncertainty and accuracy analysis, the method of Deng et al. (2001) was better than other methods and then the equation presented by Zeng and Huai (2014) with CUI = 0.717 had the best performance. The two data-driven methods of the M5 and GE are also ranked next. The results of TOPSIS method are completely in accordance with CUI method and there is no difference between the two methods. According to the VIKOR method, the two methods of Deng et al. (2001) and Zeng and Huai (2014) work best, followed by data-driven models. The only difference between the results of the VIKOR model and the two CUI and TOPSIS methods is the ranking of the two data-driven methods, so that the GE model is more efficient than the M5 model in VIKOR method.
Conclusions The results of the three multi-criteria decision-making methods were close to each other and in all the methods, the mathematical model of Deng et al. (2001) and the empirical model of Zeng and Huai (2014) were more efficient than the other methods. It is important to note that the uncertainties of decision-making models have not been examined in this study and the purpose of the present uncertainty study has been to quantify the inherent uncertainties of the methods and relationships for estimating the longitudinal dispersion coefficient.

کلیدواژه‌ها [English]

  • Multi-Criteria Decision Models
  • Vikor
  • TOPSIS
  • CUI
  1. 1. Alizadeh M.J., Ahmadyar D., and Afghantoloee A. 2017. Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient. Water Resources Management, 31(6), 1777-1794.
    2. Azamathulla H.M., and Ghani A.A. 2011. Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams. Water Resources Management, 25(6), 1537-1544.
    3. Azamathulla H.M., and Wu F.C. 2011. Support vector machine approach for longitudinal dispersion coefficients in natural streams. Applied Soft Computing, 11(2), 2902-2905.
    4. Bai S., Hua Q., Elwert, T., and Wang, Q. 2018. Development of a method based on MADM theory for selecting a suitable cutting fluid for granite sawing process. Journal of cleaner production, 185, 211-229.
    5. Cheng C.T., Zhao M.Y., Chau K.W. and Wu X.Y. 2006. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. Journal of Hydrology, 316(1-4), 129-140.
    6. Davis P.M., and Atkinson T.C. 2000. Longitudinal dispersion in natural channels: 3. An aggregated dead zone model applied to the River Severn, U.K. Hydrology and Earth System Sciences Discussions, 4(3), 373-381.
    7. Davis P.M., Atkinson T.C., and Wigley T.M.L. 2000. Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, U.K. Hydrology and Earth System Sciences Discussions, 4(3), 355-371.
    8. Deng Z.Q., Singh V.P., Bengtsson L. 2001. Longitudinal dispersion coefficient in straight rivers. Journal of Hydraulic Engineering 127:919-927
    9. Disley T., Gharabaghi B., Mahboubi A.A., and McBean, E.A. 2015. Predictive equation for longitudinal dispersion coefficient. Hydrological Processes, 29(2), 161-172.
    10. Elder J.W. 1959. The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5(4), 544-560.
    11. Etemad-Shahidi A., and Taghipour M. 2012. Predicting longitudinal dispersion coefficient in natural streams using M5' model tree. Journal of Hydraulic Engineering, 138(6), 542-554.
    12. Fischer H.B. 1968. Dispersion predictions in natural streams. Journal of the Sanitary Engineering Division, 94, 927–944.
    13. Fischer H.B., and Engineers A. S.C. 1967. The Mechanics of Dispersion in Natural Streams: American Society of Civil Engineers.
    14. Godfrey R.G. and Frederick B.J. 1970. Stream dispersion at selected sites. US Government Printing Office.
    15. Graf J.B. 1995. Measured and predicted velocity and longitudinal dispersion at steady and unsteady flow, Colorado River, Glen Canyon Dam to Lake Mead. JAWRA Journal of the American Water Resources Association, 31(2), 265-281.
    16. Guymer I. 1998. Longitudinal dispersion in sinuous channel with changes in shape. Journal of Hydraulic Engineering, 124(1), 33-40.
    17. Herrera L. J., Pomares H., Rojas I., Valenzuela, O., and Prieto, A. 2005. TaSe, a Taylor series-based fuzzy system model that combines interpretability and accuracy. Fuzzy sets and systems, 153(3), 403-427.
    18. Ibañez-Fores V., Bovea M., and Azapagic A. 2013. Assessing the sustainability of Best Available Techniques (BAT): methodology and application in the ceramic tiles industry. Journal of cleaner production, 51, 162-176.
    19. Kashefipour S. M., and Falconer, R.A. 2002. Longitudinal dispersion coefficients in natural channels. Water Research, 36(6), 1596-1608.
    20. Khosravi K., Shahabi H., Pham B.T., Adamowski J., Shirzadi A., Pradhan B., Dou, J., Ly, H.B., Grof G., Ho H.L. and Hong H. 2019. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 573, 311-323.
    21. Lasdon L.S., Waren A.D., Jain A. and Ratner M., 1976. Design and testing of a generalized reduced gradient code for nonlinear programming (No. SOL-76-3). STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB.
    22. Li X., Liu H., and Yin M. 2013. Differential evolution for prediction of longitudinal dispersion coefficients in natural streams. Water Resources Management, 27(15), 5245-5260.
    23. Ma J., Fan Z.P., and Huang L.H. 1999. A subjective and objective integrated approach to determine attribute weights. European journal of operational research, 112(2), 397-404.
    24. Mays L. 1992. Water demand forecasting. Hydrosystem Engineering and Management, 24-32.
    25. McQuivey, R. S., and Keefer, T. N. (1974). Simple method for predicting dispersion in streams. J Environ Eng Div, 100(4), 997–1011.
    26. Nasiri F., Maqsood I., Huang G., and Fuller N. 2007. Water quality index: a Fuzzy river-pollution decision support expert system." Journal of Water Resources Planning and Management, 133(2), 95-105.
    27. Nezaratian H., Zahiri J. and Kashefipour S.M., 2018. Sensitivity Analysis of Empirical and Data-Driven Models on Longitudinal Dispersion Coefficient in Streams. Environmental Processes, 5(4), pp.833-858.
    28. Noori R., Ghiasi B., Sheikhian H., and Adamowski J. F. 2017. Estimation of the Dispersion Coefficient in Natural Rivers Using a Granular Computing Model. Journal of Hydraulic Engineering, 143(5), 04017001.
    29. Nordin C.F. and Sabol G.V. 1974. Empirical data on longitudinal dispersion in rivers (No. 74-20). US Geological Survey.
    30. Pakkar M. S. 2015. An integrated approach based on DEA and AHP. Computational Management Science, 12(1), 153-169.
    31. Parsaie A., and Haghiabi A. H. 2017. Computational modeling of pollution transmission in rivers. Applied Water Science, 7(3), 1213-1222.
    32. Rao R.V., and Davim J.P. 2008. A decision-making framework model for material selection using a combined multiple attribute decision-making method. The International Journal of Advanced Manufacturing Technology, 35(7-8), 751-760.
    33. Rutherford J.C. 1994. River mixing. John Wiley and Son Limited.
    34. Sabzkouhi A. M. and Haghighi A. 2018 Uncertainty analysis of transient flow in water distribution networks. Water Resources Management, 39(9), 1-18
    35. Sahay R. R., and Dutta S. 2009. Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydrology Research, 40(6), 544-552.
    36. Sahin S. 2014. An empirical approach for determining longitudinal dispersion coefficients in rivers. Environmental Processes 1:277-285.
    37. Sattar A. M. A., and Gharabaghi B. 2015. Gene expression models for prediction of longitudinal dispersion coefficient in streams. Journal of Hydrology, 524(Supplement C), 587-596.
    38. Seo I. W., and Cheong, T.S. 1998. Predicting longitudinal dispersion coefficient in natural streams. Journal of Hydraulic Engineering, 124(1), 25-32.
    39. Shi P., Yang T., Yong B., Li Z., Xu C.Y., Shao Q., . . . Qin, Y. 2019. A New Uncertainty Measure for Assessing the Uncertainty Existing in Hydrological Simulation. Water, 11(4), 812.
    40. Singh T., Patnaik A., Chauhan R., and Chauhan P. 2018. Selection of brake friction materials using hybrid analytical hierarchy process and vise Kriterijumska Optimizacija Kompromisno Resenje approach. Polymer Composites, 39(5), 1655-1662.
    41. Srivastava G., Panda S. N., Mondal P., and Liu J. 2010. Forecasting of Rainfall Using Ocean-Atmospheric Indices with a Fuzzy Neural Technique. Journal of Hydrology, 395(4), 190-198.
    42. Tung Y. K. 2005. Hydrosystems Engineering Uncertainty Analysis: McGraw-Hill.
    43. Xie X.J. 2014. Research on Material Selection with Multi-Attribute Decision Method and G1 Method. Paper presented at the Advanced Materials Research.
    44. Yang X.S. 2010. Nature-inspired metaheuristic algorithms: Luniver press.
    45. Yotsukura N., Fischer H. B., and Sayre W. W. 1970. Measurement of mixing characteristics of the Missouri River between Sioux City, Iowa, and Plattsmouth, Nebraska.
    46. Zeleny M. 1982. Multiple criteria decision-making. New York, USA. McGraw Hill.
    47. Zeng Y, Huai W. 2014. Estimation of longitudinal dispersion coefficient in rivers. Journal of Hydro-environment Research, 8(1):2-8.
    48. Zheng H. 2015. Multi-sensor Target Recognition Using VIKOR Combined With G1 Method. Paper presented at the Applied Mechanics and Materials.
    49. Zou Z.H., Yi Y., and Sun J.N. 2006. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental sciences, 18(5), 1020-1023.