برآورد نیاز آبی مراحل مختلف فنولوژیک گیاه کلزا در دو اقلیم‌ استان اصفهان

نوع مقاله : مقالات پژوهشی

نویسندگان

1 مرکز تحقیقات کشاورزی Tمنابع طبیعی استان اصفهان

2 سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

به منظور برآورد نیاز آبی گیاه کلزا در دو اقلیم (خشک- زمستان سرد با دمای بالای نقطه انجماد - تابستان گرم A-C-W) و (نیمه خشک- زمستان سرد با دمای برابر یا کمتر از صفر- تابستان گرم SA-K-W) در استان اصفهان، پژوهشی در سال­های 1396-1394 با استفاده از طرح کاملاً تصادفی نامتعادل انجام شد. بین شهرستان‌های مختلف تفاوت معنی‌داری (در سطح 1%)  ازنظر کل آب مصرفی و همچنین نیاز آبی مراحل مختلف رشد فنولوژیک وجود داشت. در اقلیم W-K-SA (با 10 شهرستان) نیاز خالص آبیاری کلزا 4000 متر مکعب در هکتار برآورد شد. اختلاف بیشترین و کمترین نیاز آبی خالص در این اقلیم 322 متر مکعب در هکتار و به ترتیب مربوط به شهرستان‌های فریدن و فریدون‌شهر بود. به‌طور متوسط نیاز آبی مراحل ابتدایی، توسعه و (میانی + پایانی) کلزا در اقلیم W-K-SA به ترتیب برابر 450، 2187 و 1363 متر مکعب در هکتار بود. در اقلیم A-C-W (12 شهرستان) نیاز آبی کلزا در هر هکتار 892 متر مکعب بیش از نیاز آبی این محصول در اقلیم SA-K-W بود. به‌طور متوسط نیاز آبی مراحل ابتدایی، توسعه و (میانی + پایانی) کلزا در اقلیم A-C-W به ترتیب برابر 540، 2150 و 2200 متر مکعب در هکتار بود. با توجه به نتایج، شهرستان‌های واقع در اقلیم SA-K-W نسبت به اقلیم A-C-W موقعیت مناسب‌تری برای کشت کلزا داشته و صرف‌نظر از شیوه آبیاری در هر هکتار حداقل 4000 متر مکعب آب برای این منظور نیاز است. با این وجود موفقیت کشت در این اقلیم به دلیل محدودیت طول دوره رشد مشروط به کشت به هنگام است. 

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Net Water Requirement of Different Phenological Stages of Canola in Isfahan Province

نویسندگان [English]

  • َA. H. Jalali 1
  • H.R. Salemi 2
1 Assistant Professor, Horticulture Crops Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran.
2 Assistant Professor, Agricultural Engineering Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran.
چکیده [English]

Introduction: In recent years, canola cultivation in Iran has been considered as oil production, and in 2014-2015, it has been allocated to 7.7% of the cultivation area of industrial products of the country. The yield of canola oil and seeds depends on the availability of sufficient water resources during the growth period. In the Mediterranean, with the cultivation of canola autumn, the high- temperature occurs in the stages of formation and growth of seeds in the spring can increase the water requirement of this plant and irrigation management at this time is important in increasing plant yield. Due to the weather conditions of each area, type of variety and soil conditions may vary the need for canola. In one study in Hamedan water use efficiency of canola in two ways drip and furrow irrigation were calculated as 1.09 and 0.63 kg m-3, respectively. The present study was conducted with the purpose of evaluating the net water requirement of canola plant in different cities of Isfahan province into different climatic zones and considering the phonological stages.
Materials and Methods: In order to estimate the net water requirement of canola under two different climates (arid-cold winter with temperatures above freezing point - hot summer A-C-W) and (Semi-arid-cold winter with a temperature equal to or less than zero-hot summer SA-K-W) in Isfahan province, a research was conducted in 2014-2015 using a completely randomized, unbalanced design. The study was carried out in different cities of Isfahan province, which have canola cultivation. The required statistical information was obtained from 28 stations of synoptic and climatologic meteorology in Isfahan province and some neighboring provinces. Soil data was used to calculate the soil evaporation coefficient (Ke), which describes the evaporation component in the trait (ETc). In order to calculate the soil properties, in addition to the sampling of existing fields, a database of 1600 soil profiles in the Soil and Water Research Department of Isfahan province was also used. The plant growth stages were considered based on FAO’s 56 irrigation and drainage journal. For analyzing data in each climate, a completely randomized, unbalanced design (with inequality repeat) was used, and the meanings were compared with Duncan’s multiple range test (at 5% level).
Results and Discussion: There was a significant difference (α=1%) between the different cities in terms of total water consumption and the net water requirement of different phenological growth stages. In the SA-K-W climate, the net water requirement for each hectare of canola cultivated in the cities of Fereydoun Shahr, Friedan, Golpayegan, Khansari, Semirom, Tiran and Karvan, Shahreza, Chadegan, Dehaghan, and Boein va Mian Dasht was 3936, 4069, 4258, 4011, 3991, 4147, 3964, 3961, 4035 and 4055 m-3, respectively. In the SA-K-W climate (with ten cities), the net water requirement of canola was estimated at 4,000 m-3 ha-1. The difference between the highest and the least water requirement in this climate were 322 m-3 ha-1 and related to cities of Frieden and Fereydoun City, respectively. In the climate of A-C-W (12 cities), canola net water requirement was 892 m-3 ha-1 more than the net water requirement of this crop in the SA-K-W climate. On average, the initial, developmental, and (middle and final) net water requirements of the canola in the A-C-W climate were 540, 2150, and 2200 m-3 ha-1, respectively. The net irrigation requirement estimated for each ha-1 of canola cultivation in Isfahan, Ardestan, Khomeini Shahr, Falavarjan, Kashan, Lenjanat, Naein, Najaf Abad, Natanz, Shahin Shahr, Mobarakeh, and Borkhar cities was 4747. 4807. 4797, 5,105, 4885, 4908, 4750, 4785, 4974, 4971, 4879 and 5097 m-3, respectively.
Conclusion: Based on the results of the 10 cities in the SA-K-W climate, canola production per hectare requires an average of 4,000 cubic meters of net water per hectare. In the A-C-W climate of 12 cities, the average net water requirement per hectare was 4892 m-3. The difference in water requirement between this climate and the climate of SA-K-W was related to the middle and late stages of canola growth.

کلیدواژه‌ها [English]

  • Early growth stage
  • Development stage
  • yield
Abbasi F., and Sheinidashtegol A. 2016. Assess and improve the management of furrow irrigation in irrigated fields of sugarcane in Khuzestan. Journal of Water and Soil Science (2)4: 109-121. (In Persian)
2. Anonymous. 1998-2018. ANOVA Report of sugarcane Research Institute of Khuzestan, Iran. (In Persian)
3. Bhingardeve S.D., Pawar D.D., Dinger S.K., and Hasure R.R. 2017. Water Productivity in Sugarcane under Subsurface Drip Irrigation. International Journal of Agriculture Sciences 9(29): 4377-4381.
4. Çolak Y.B., Yazar A., Gönen E., and Çağlar Eroğlu E. 2018. Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns. Agricultural Water Management 206: 165–175.
5. Consoli S., Stagno F., Roccuzzo G., Cirelli G.L. and Intrigliolo, F. 2014. Sustainable management of limited water resources in a young orange orchard. Agricultural water management 132: 60-68.
6. Dalri A. B. and. Cruz R. L. 2008. Produtividade da cana-de-açúcar fertirrigada com N e K via gotejamento subsuperficial. Engieering Agrculture 28(3): 516–524. (In Portuguese)
7. ICUMSA (International Commission for Uniform Methods in Sugar Analysis). 2009. ICUMSA Methods book and ICUMSA supplement. Edt, Whalley, H.C.S. Elsevier publishing company, Amsterdam, London, New York. 420pp.
8. Javadi F., Moazed H., Haghnazari F., and Bait leteh R. 2011. Evaluation Water Productivity and Water Use Efficiency in the cultivation of sugar cane on the CP57-614 Variety in the agro-industry Hakim Farabi, the first national conference on strategies for achieving sustainable agriculture, PNU, Ahvaz. (In Persian)
9. Karlberg L., Rockstrom J., Annandale J.G., and Steyn J.M. 2007. Low-cost drip irrigation. A suitable technology for southern Africa: An example with tomatoes using saline irrigation water. Agricultural Water Management 89(1): 59-70.
10. Kandelous M.M., and Simunek J. 2010b. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agricultural Water Management 97: 1070–1076.
11. Lamm F.R., and Cam C.C. 2007. Subsurface drip irrigation. Micro irrigation for crop production: Design, operation and management, F.R. Lamm, J.E. Ayars and F. S. Nakayama, eds., Elsevier, Amsterdam, The Netherlands, 618.
12. Leonardo N.S. dos Santosa., Edson E., Matsura Ivo Z., Gonc alves Eduardo A.A., Barbosa Aline A., Nazario Natalia F., Tuta Marcelo C.L., Elaiuy Daniel R.C., and Feitosa Allan C.M. de Sousa. 2016. Water storage in the soil profile under subsurface drip irrigation: Evaluating two installation depths of emitters and two water qualities, Agricultural Water Management n170: 91-98.
13. Martinez-Gimeno M.A., Bonet L., Provenzano G., Badal E., Intrigliolo D.S., and Ballester C. 2018. Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation. Agricultural Water Management 206: 209–216.
14. Regina Celi M.P., Eduardo Augusto A.B., Flavio Bussmeyer A., Emilio S., and Tonny Jose A.S. 2015. Effects of Subsurface Drip Irrigation and Different Planting Arrangements on the Yields and Technological Quality of Sugarcane. ASCE, A5014001-1, Journal Irrigation Drainage Engineering.
15. Sedaghati N., Hosaini-Fard S., and Mohamadi Mohamad-Abadi. 2012. Compare the effect of surface and subsurface drip irrigation on growth and yield of pistachio trees, Journal of Soil and Water 26(3): 575-585. (In Persian)
16. Sheini- Dashtegol A., Kashkouli H.A., and Boroomand-Nasab S. 2009. The effects of every-other furrow irrigation on Water Use Efficiency and quality and quantity characteristics in South Ahvaz sugarcane fields, Journal of Soil and Water Sciences, Isfahan University of Technology year 13, 49: 45-57. (In Persian)
17. Skaggs TH., Trout TJ., Šimůnek J., and Shouse PJ. 2004. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. Journal Irrigation Drainage Engineering 130: 304–310.
18. Surendran U., Jayakumar M., and Marimuthu S. 2016. Low cost drip irrigation: impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India. Science of the Total Environment 573: 1430-1440.
19. Uribe R.A.M., Gava DE. C., Saad J.C.C., and Koll O.T. 2013. Ratoon sugarcane yield integrated drip irrigation and nitrogen fertilization. Eng. Agric., Jaboticabal 33(6): 1124-1133.
CAPTCHA Image