اثر تخریب جنگل و تغییر پوشش گیاهی رویشگاه بر شاخص‌های اکولوژیکی لایه آلی و معدنی خاک

نوع مقاله : مقالات پژوهشی

نویسندگان

1 استادیار گروه مرتعداری، دانشکده منابع طبیعی دانشگاه تربیت مدرس، نور، مازندران، ایران

2 کارشناسی‌ارشد جنگلداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، مازندران، ایران

چکیده

تخریب رویشگاه­های جنگلی و تغییر پوشش گیاهی اراضی از جمله عوامل مؤثر بر تغییرپذیری شاخص­های اکولوژیکی لایه­های آلی و معدنی خاک بشمار می­روند. بدین منظور، در پژوهش پیش رو چهار نوع پوشش گیاهی شامل جنگل طبیعی کمتر دست­خورده ممرز- انجیلی، جنگل­کاری 40 ساله آمیخته نوئل-کاج سیاه، عرصه جنگلی تخریب یافته ممرز- انجیلی، مرتع قرق با پوشش گیاهی یونجه تاجی در منطقه گرگ­پس، جنوب­غربی شهرستان چالوس، انتخاب شد. پس از بازدید و شناسایی دقیق رویشگاه­ها، در هر یک از این عرصه­ها، تعداد 8 نمونه لایه آلی و معدنی خاک در فصل تابستان برداشت و نمونه­های جمع­آوری شده جهت تجزیه فیزیکی و شیمیایی به آزمایشگاه انتقال داده شدند. مطابق نتایج، در لایه آلی خاک، بیشترین نسبت کربن به نیتروژن به عرصه مرتع اختصاص داشت. بالاترین مقادیر درصد کربن و ضخامت لایه آلی نیز به ترتیب در پوشش­های اراضی مرتعی و جنگل مخروبه مشاهده شد. در لایه معدنی خاک، بیش­ترین مقادیر مشخصه­های درصد شن، رطوبت، کربن و نسبت کربن به نیتروژن خاک به پوشش مرتعی تعلق داشت، در حالی که بیش­ترین درصد رس، pH، هدایت الکتریکی، درصد نیتروژن،در پوشش جنگلی مشاهده شد. بیش­ترین تعداد و زیتوده کرم­های خاکی، جمعیت نماتد، معدنی­شدن نیتروژن، مقادیر آمونیوم و نیترات، تنفس پایه، تنفس برانگیخته، نیتروژن زی‌توده میکروبی و ضریب متابولیکی در پوشش جنگلی مشاهده شد. به­طور کلی، نتایج این پژوهش حاکی از آن است که مشخصه­های اکولوژیکی لایه آلی و معدنی خاک تحت رویشگاه جنگلی از وضعیت بهتری برخوردار بوده، در حالی­که تخریب جنگل و تغییر پوشش اراضی باعث کاهش شاخص­های حاصل­خیزی و زیستی خاک شده است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Deforestation and Vegetation Cover Change on the Ecological Indices of Soil Organic and Mineral Layers

نویسندگان [English]

  • Y. Kooch 1
  • M. Azizi Mehr 2
1 Assistant Professor, Department of Range Management, Faculty of Natural Resources, Tarbiat Modares University (TMU), Noor, Mazandaran Province, Iran
2 M.Sc. of Forestry, Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University (TMU), Noor, Mazandaran Province, Iran
چکیده [English]

Introduction: Degradation of forest habitats and alteration of soil vegetation are efficient factors affecting the variability of ecological indices of organic and mineral layers of soils. In Iran, degradation of forest habitats and changes in habitat type, especially over the last century, affected soil quality, plant biomass production and environmental sustainability. Hence, in this study, the effect of different forest and rangeland vegetation types on the ecological parameters of soil organic and mineral layer has been investigated.
Materials and Methods: To study and evaluate the effects of forest degradation and site change on soil organic and mineral ecological indices, four types of vegetation were selected in Gorgpas areas, southwest of Chalus city, Mazandaran Province. The land cover is as follows in the study area:
(1) Less-degraded forest dominated by Carpinus betulus L.- Parrotia persica C. A. May
(2) Fourty year's old plantation of Pinea abies (L.) Karst - Pinus nigra Arnold
(3) Deforested areas including Carpinus betulus L. - Parrotia persica C. A. May
(4) Exclosure rangeland dominated by Coronilla varia L.
Physiographically similar land covers, were selected during a field research in the studied areas. Eight litter and soil samples (0-15 cm in depth and 30 cm × 30 cm in depth) were collected from each area in summer. In order to reduce the boundary effects, sampling was performed in the center of each land cover. The collected samples of organic layer (litter) and soil mineral transferred to the laboratory for analysis. The collected data was stored as a database in Excel. Then, to analyze and compare the data, the normality distribution of observations was evaluated by Kolmogorov-Smirnov test and variance homogeneity by Levene test. Analysis of variance used to investigate the significant/non-significant differences of different soil organic and inorganic layer characteristics in relation to the studied areas. Duncan test used for multiple mean comparisons. All statistical analyzes were performed by SPSS software version 23. Principal component analysis (PCA) was employed to study the relationship between soil organic matter and soil mineral quality in the studied land cover.
Results and Discussion: According to the results, in the soil organic layer the highest carbon/nitrogen ratio (%) assigned to the rangeland, while the nitrogen (%) content was highest in the natural forest. The highest amount of carbon and organic layer thickness were also observed in rangeland and degraded forest cover, respectively. In the mineral soil layer, the highest value of sand (%), moisture (%), carbon (%) and carbon to nitrogen ratios (%) belonged to the rangeland cover, while the highest amount of clay v (%), pH (1:2.5 H2O), electrical conductivity (ds m-1), nitrogen (%), phosphorus (%), potassium (mg kg-1), calcium (mg kg-1) and magnesium (mg kg-1) were observed in the forest cover. The highest number and biomass of earthworms (n m-2), nematode population (In 100-gram soil), nitrogen mineralization (mg kg-1l), ammonium (mg kg-1), nitrate (mg kg-1), basal respiration (mg CO2 g−1 day−1), substrate induced respiration (mg CO2 g−1 day−1), microbial nitrogen biomass (mg kg-1) and metabolic coefficient (μg CO2-C mg-1 MBC day-1) observed in forest cover. There was no significant difference between the studied vegetations for bulk density (g cm-3) characteristics, silt (%), microbial biomass of carbon (mg kg-1) and microbial coefficient (μg CO2-C mg-1 MBC day-1). Higher nitrate density in natural forest and under cultivated soils are due to the presence of litter species with low carbon/nitrogen ratio, high pH and calcium. Conversion of natural broadleaf covers to needle leaf plantation and rangeland reduces the biochemical processes of ammonium. Nitrogen mineralization rates are strongly influenced by area management and forest canopy cover, so that under the broadleaf stands, this rate was more than the needle leaf stands. This probably was due to the greater nitrogen of litter, the lower carbon to nitrogen ratio and the faster rate of decomposition of organic matter in broadleaves. Most of the time the increase in pH increases the rate of mineralization of nitrogen.
Conclusion: The present study indicated that forest habitat had the highest number and biomass of earthworms, soil nematode population, ammonium, nitrate, metabolic coefficient, basal and substrate induced respiration, carbon availability index, microbial biomass and nitrogen mineralization, while, there was no significant difference between the studied forests and rangelands in carbon microbial biomass and microbial coefficient. In general, the results of this study showed that the physicochemical and biological characteristics of soil organic matter in the forest habitats were better than other studied vegetations and the forest degradation and land-use changes reduced soil fertility and microbial indices.

کلیدواژه‌ها [English]

  • Broad-leaved forest؛ Exclosure rangeland؛ Needle-leaved plantation؛ Nitrogen biomass microbial
  • Microbial activities
1- Ali Asgharzade N. 1389. Laboratory Methods in Soil Biology, Tabriz University Publications. (In Persian with English abstract)
2- Álvaro-Fuentes J., López M.V., Cantero-Martínez C., and Arrúe J.L. 2008. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Science Society of America Journal 72(2): 541-547.
3- Aponte C., García L.V., and Marañón T. 2013. Tree species effects on nutrient cycling and soil biota: a feedback mechanism favoring species coexistence. Forest Ecology and Management 309(1): 36-46.
4- Asadian M., Hojjati S.M., Pormajidian M.R., and Fallah a. 1392. The effect of different types of land use on soil quality in Sari alandan forest. Natural Geography Research 45(3): 65-76. (In Persian with English abstract)
5- Bayranvand M., and Kooch Y. 2016. Effect of broadleaved tree species on the abundance and diversity of earthworms in the lowland forest ecosystem. Journal of Soil Biology 4(1): 15-26. (In Persian with English abstract)
6- Beheshti Al Agha A., Raiesi F., and Golchin A. 1390. The effect of land use change from pasture to arable land on soil microbiological and biochemical indices in Kangavar, Dehno and Soltanieh. Journal of Water and Soil 25(3): 548-562. (In Persian with English abstract)
7- Berg B., and McClaugherty C. 2008. Decomposition, humus formation, carbon sequestration. Plant litter. 2nd ed. Berlin Heidelberg: Springer.
8- Binkley D., and Fisher R. 2012. Ecology and Management of Forest Soils. John Wiley and Sons.‏ 368p.
9- Brown L.R. 2002. World's rangelands deteriorating under mounting pressure. Earth Policy 6(2): 599-622.
10- Burger J. A., 2004. Soil and its Relationship to Forest Productivity and Health, In: Encyclopedia of forest sciences, eds. Burley, J., Evans, J., Youngquist, J.A., Oxford, UK: Elsevier, pp: 1189-1195.
11- Chen H., Li B., Fang C., Chen J., and Wu J. 2007. Exotic plant influences soil nematode communities through litter input. Soil Biology and Biochemistry 39(7): 1782-1793.
12- Cusack D.F., Silver W.L., Torn M.S., Burton S.D., and Firestone M.K. 2011. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92(3): 621-632.
13- Fallahchai M.M., Salehi A., and Mard Alizade Gh. 2016. Natural Regeneration of (Populus caspica Bornm.) and its relationship with soil physical and chemical properties (Case Study: Safrabaste Region in East of Guilan province) 29(1): 118-129. (In Persian with English abstract)
14- Faryabi N., Mesdaghi M., and Baghery R. 2011. A Comparison of Species Diversity and Richness at Three Levels of Rangeland Utilization and Neighboring Areas. Pasture 8(3): 171-180. (In Persian with English abstract)
15- Fernandez, I.J., Rustad, L.E., Norton, S.A., Kahl, J.S. and Cosby, B.J., 2003. Experimental acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine. Soil Science Society of America Journal 67(6): 1909-1919.
16-Finzi, A.C., Canham, C.D. and Van Breemen, N., 1998. Canopy tree-soil interactions within temperate forests: species effects on pH and cations. Ecological Applications 8(2): 447-454.
17- Frouz., J., Liveckova, M., Albrechtova, J., Chronakova, A., Cajthaml, T., Pizl, V. and Cepakova, S. 2013. Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management 309(4): 87-95.
18- Ghasemi Aghbash F., Jalali Gh.A., Hosseini V., Hosseini S.M., and Berg B. 2015. Study of the relationship of nutrients dynamics and chemical composition of litter with decomposition rate in late decomposition stages 27(4): 715-727. (In Persian with English abstract)
19- Ghazan Shahi J. 2006. Soil and Plant Analysis, Homa Publications, 272 pp.
20- Golchin A., and Asgari H. 2008. Land use effects on soil quality indicators in north-eastern Iran. Soil Research 46(1) :27-36.
21- Haj abbasi M.A., Jalalian A., Khajeddin J., and Karimzade. 2002. A Study of the Impact of Rangelands on Organizational Lands on the Decision of Physical Properties, Punishment, and Possibility of Legal Rescue of Soil in Borujen. Isfahan Agricultural Science and Technology 6(1): 149-161. (In Persian with English abstract)
22- Heydari M., Poorbabaei H., Bazgir M., Salehi A., and Eshaghirad J. 2014. Earthworms as indicators for different forest management types and human disturbance in Ilam oak forest, Iran, Folia Forestalia Polonica 56(3): 121-134.
23- Hoffmann W.A., Lucatelli V.M.P.C., Silva F.J., Azeuedo I.N.C., Marinho M. da S., Albuberque A.M.S., Lopes A.de.O., and Moreira S.P. 2004. Impact of the invasive alien grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers. Distrib 10(2): 99-103.
24- Jafari haghighi M. 1382. Soil Analysis Methods (Sampling and Important Physical and Chemical Analysis), Zahi Neda Publications.
25- Jia B., Zhou G., Wang F., Wang Y., and Weng E. 2007. Effects of grazing on soil respiration of leymus chinensis steppe. Climatic Change 82(2): 211-223.
26- Kabodi Sh., Shahbazi F., Ali Asgharzade N., Najafi N., and Davatgar N. 2017. Impact of Land Use on Soil Microbial Population and their Spatial Variability in Mirabad Lands. Naghde. Journal of Water and Soil (Agricultural Science and Technology) 31(6): 1610-1602. (In Persian with English abstract)
27- Kooch Y., and Bayranvand M. 2017. Variability analysis of litter quality, mineral nitrogen, soil respiration and microbial biomass under afforested tree stands. Forest and Wood Products, Iranian Journal of Natural Resources 70(3): 451-460. (In Persian with English abstract)
28- Kooch Y., and Hosseini S.M. 2015. Forest Soil Ecology (Concepts and Algorithms). University Jihad Publications, Mazandaran Branch.
29- Kooch Y., Hosseini S.M., Zaccone C., Jalilvand H., and Hojjati S.M., 2012. Soil organic carbon sequestration as affected by afforestation: The Darab Kola forest (North of Iran) case study. Journal of Environmental Monitoring, 14(3): 2438-2446.
30- Kooch Y., Samadzade B., and Hosseini S.M. 2017a. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena 150(1-3): 223-229.
31- Lacasta C., Benítez N., Maire M., and Meco R. 2006. Efecto de la textura del suelo sobre diferentes parámetros bioquímicas. VII Congreso SEAE: Agricultura y Alimentación Ecológica 11(3): 110-115.
32- Li M., Zhou X., Zhang Q., and Cheng X. 2014. Consequences of Afforestation for Soil Nitrogen Dynamics in CentralChina. Agriculture, Ecosystems and Environment 183(4): 40-46.
33- Liao C., Luo Y., Fang C., Chen J., and Li B. 2012. The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta‐analysis. Global Ecology and Biogeography, 21(3): 318-327.
34- Marvie Mohajer M.R. 2013. Silviculture. University of Tehran Publications.
35- Memarian F., Tabari M., Hosseini S.M., and Banej Shafie A. 2007. Comparison of biodiversity of mixed needle mass with broadleaf mixed mass in Kelardasht area. Environmental Studies 33(1): 103-108. (In Persian with English abstract)
36- Meyfroidt P., Puong V.T., and Anh H.V. 2013. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the Central highlands of Vietnam. Global Environmental Change 23(2): 1187-1198.
37- Moslehi M., Nazari J. 2012. Interactions between earthworms and trees and their effects on forest soils. Human and Environmental Quarterly 20(1): 108-113. (In Persian with English abstract)
38- Neatrour M.A., Jones R.H., and Golladay S.W. 2005. Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regims. Canadian Journal of Forest Research 35(12): 2934-2941.
39- Neher D.A., Wu J., Barbercheck M.E., and Anas O. 2005. Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology 30(1): 47-64.
40- Neirynck j., Mirtcheva S., Sioen G., and Lust N. 2000. Impact of Tilia platyphyllos Scop. Fraxinus exceslsior L., Acer pseudoplatanus L., Quercus robur L., Quercus robur L and Faqus sylvatica L. On earthworm biomass and physico-chemical properties of Loamy topsoil. Forest Ecology and Management 133(3): 275-286.
41- Noorbakhsh F., Vergnolle N., Hollenberg M.D., and Power C. 2003. Proteinase-activated receptors in the nervous system. Nature Reviews Neuroscience 4(12): 981.
42- Osono T., Azuma J.I., and Hirose D. 2014. Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils. Plant and Soil 376(1-2): 411-421.
43- Plante J. 2007. Multi-stage memory buffer and automatic transfers in vehicle event recording systems. United States Patent Application 11/297,669, filed June 14.
44- Salamon J.A., Schaefer M., Alphei J., Schmid B., and Scheu S. 2004. Effects of Plant Diversityon Collembola in an Experimental Grassland Ecosystem. Oikos 106(1): 51-60.
45- Scharenbroch B.C., and Johnston D.P. 2011. A microcosm study of the common night crawler earthworm (Lumbricus terrestris) and physical, chemical, and biological properties of a designed urban soil. Urban Ecosystems 14(1): 119-134.
46- Schoenholtz S.H., Van Miegroet H., and Burger J.A. 2000. A Review of Chemical and Physical Properties as Indicators of Forest Soil Quality: Challenges and Opportunities. Forest Ecology and Management 138(1): 335-356.
47- Schwarz B. 2015. Non-significant tree diversity but significant identity effects on earthworm communities in three diversity expermrnts. Europ. J. Soil Biol, 67(4): 17-26.
48- Shabanian N., Heidari M., and Zeinivandzadeh M. 2010. Effect of Coniferous and Broadleaved Species on Plant Species Diversity and Some Physical and Chemical Properties of Soil. Iranian Journal of Forest and Poplar Research 18(3): 437-446. (In Persian with English abstract)
49- Shahbazi K., and Besharati H. 2013.Overview of Agricultural Soil Fertility Status of Iran. Journal of Land Management 1(1): 1-15.
50- Sun X., Zhang X., Zhang S., Dai G., Han S., and Liang W. 2013. Soil Nematode Responses to Increases in Nitrogen Deposition and Precipitation in a Temperate Forest. Plos One 8(12): e82468.
51- Tardy V., Mathieu O., Lévêque J., Terrat S., Chabbi A., Lemanceau P., Ranjard L., and Maron, P.A. 2014. Stability of soil microbial structure and activity depends on microbial diversity. Environmental Reports 6(2): 173-183.
52- Turmel M.S., Speratti A., Baudron F., Verhulst N., and Govaerts B. 2015. Crop residue management and soil health: A systems analysis. Agricultural Systems 134(5): 6-16.
53- Wang H., Liu S., Wang J., Shi Z., Lu L., Zeng J., and Yu H. 2013. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China, Forest Ecology and Management, 300(5): 4-13.
54- Wang Q., Xiao F., Zhang F., and Wang S. 2013. Labile soil organic carbon and microbial activity in three subtropical plantations. Forestry 86(5): 569-574.
55- Wang W.J., and Dalal R.C. 2006. Carbon inventory for a cereal cropping system under contrasting tillage. Nitrogen fertilization and stubble management practices. Soil and Tillage Research 91(1): 68-74.
56- Yang K., Zhu J., Zhang, M., Yan Q., and Sun O.J. 2010. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal of Plant Ecology 3(3): 175-182.
57- Zhang X., Guan P., Wang Y., Li Q., Zhang S., Zhang Z., Bezemer T.M., and Liang W., 2015b. Community composition, diversity and metabolic footprints of soil nematodes in differently aged temperate forests. Soil Biology and Biochemistry 80(1): 118-126.
58- Zhao Zh., Wei X., Wang X., Ma T., Huang L., Gao H., Fan J., Li X., and Jia X. 2019. Concentration and mineralization of organic carbon in forest soils along a climatic gradient. Forest Ecology and Management 432(5): 246–255.